Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Road network abstraction approach for traffic analysis: framework and numerical analysis

Traffic analysis road networks are extensively used in transportation planning and modelling practice. Due to computational complexity and burden, a traffic analysis road network is a subset network which usually selected from a full-size network. However, the process of subjectively choosing traffic analysis road network is problematic and may result in an unrepresentative road network which is useless for transportation analysis applications. This research targets on proposing a road network abstraction method that can scientifically and systematically select a representative road network from original full-size network to achieve both representativeness and computation efficiency in various transportation and traffic analysis applications. The road networks on dynamic traffic assignment and simulation model are the interests. At the same time, traffic analysis performance metrics, such as average travel time, vehicle routing choices, and volume, are chosen as the criteria to determine the abstracted network representativeness. A numeric experiment is conducted by implementing the method in a demonstrated Alexandria network scenario. The results indicate that the proposed method is very promising. The traffic analysis performance of the abstracted network is similar to the performance of the full-size network. However, the computational time of the abstracted network is significantly lower than that of the full-size road network.

References

    1. 1)
      • 21. Burghout, W.: ‘Mesoscopic simulation models for short-term prediction’, PREDIKT project report CTR2005 3, 2005.
    2. 2)
      • 5. Bjørke, J.T.: ‘Map generalization of road networks’. Proc. of IST-043/RWS-006, Visualisation and the Common Operating Picture, 2004, pp. 18.
    3. 3)
      • 15. Pavlis, Y., Papageorgiou, M.: ‘Simple decentralized feedback strategies for route guidance in traffic networks’, Transp. Sci., 1999, 33, (3), pp. 264278.
    4. 4)
      • 28. Kasana, R., Kumar, S., Kaiwartya, O., et al: ‘Location error resilient geographical routing for vehicular ad-hoc networks’, IET Intell. Transp. Syst., 2017.
    5. 5)
      • 25. Kaiwartya, O., Abdullah, A.H., Cao, Y., et al: ‘Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects’, IEEE Access, 2016, 4, pp. 53565373.
    6. 6)
      • 8. Zhu, L., Chiu, Y.-C.: ‘Transportation routing map abstraction approach: algorithm and numerical analysis’, Transp. Res. Record, J. Transp. Res Board, 2015, 2528, (2528), pp. 7885.
    7. 7)
      • 3. Chiu, Y.-C., Villalobos, J.A.: ‘The anisotropic mesoscopic simulation model on the interrupted highway facilities’. Symp. on the Fundamental Diagram, 2008.
    8. 8)
      • 22. Haklay, M.: ‘How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets’, Environ. Plan. B, Plan Des., 2010, 37, (4), pp. 682703.
    9. 9)
      • 6. Gong, H.: ‘Generalization of road network for an embedded car navigation system’. Dissertation, Technische Universität München, München, 2011.
    10. 10)
      • 23. Gardner, B.Transportation analysis and simulation’, 2016[cited 2016 10/11/2016]; Available at https://sourceforge.net/projects/transims/files/test%20data/.
    11. 11)
      • 14. Peeta, S., Ziliaskopoulos, A.K.: ‘Foundations of dynamic traffic assignment: the past, the present and the future’, Netw. Spat. Econ., 2001, 1, (3–4), pp. 233265.
    12. 12)
      • 11. Wang, M., Bao, X., Zhu, L., et al: ‘A map-matching method using intersection-based parallelogram criterion’, Adv. Mater. Res., 2012, 403, pp. 27462750.
    13. 13)
      • 9. van Kreveld, M., Peschier, J.: ‘On the automated generalization of road network maps’. Proc. of the 3rd Int. Conf. in GeoComputation, 1998.
    14. 14)
      • 24. Alexander, J.T., Davern, M., Stevenson, B.: ‘The polls-review: inaccurate age and sex data in the census PUMS files: evidence and implications’, Public Opin Quart., 2010, 74, (3), pp. 551569.
    15. 15)
      • 16. Peeta, S., Yang, T.H.: ‘Stability issues for dynamic traffic assignment’, Automatica, 2003, 39, (1), pp. 2134.
    16. 16)
      • 27. Sheet, D.K., Kaiwartya, O., Abdullah, A.H., et al: ‘Location information verification using transferable belief model for geographic routing in vehicular ad hoc networks’, IET Intell. Transp. Syst., 2016, 11, (2), pp. 5360.
    17. 17)
      • 26. Bai, L., Zhu, L., Bao, Y.: ‘Traffic broadcasting digital map service system with multi-correspondence’, Electron. Technol., 2009, 9, p. 017.
    18. 18)
      • 30. Zhu, L., Gonder, J., Lin, L.: ‘Prediction of individual social-demographic role based on travel behavior variability using long-term GPS data’, J. Adv. Transp., 2017, 2017, pp. 113.
    19. 19)
      • 17. Yang, T.-H.: ‘Deployable stable traffic assignment models for control in dynamic traffic networks: a dynamical systems approach’. PhD dissertation, Purdue University, 2001.
    20. 20)
      • 2. Agency, U.S.E.P.: ‘Guidance for the development of facility type VMT and speed distributions’. ProQuest, UMI Dissertation Publishing, 2011.
    21. 21)
      • 4. Sedeño-Noda, A., González-Martín, C.: ‘An efficient label setting/correcting shortest path algorithm’, Comput. Optim. Appl., 2012, 51, (1), pp. 437455.
    22. 22)
      • 1. FHWA: ‘Traffic volume trends’, 2015[cited 19 November 2015]. Available ar https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm.
    23. 23)
      • 29. Zhu, L., Holden, J., Gonder, J.: ‘A trajectory segmentation map-matching approach for large-scale, high-resolution GPS data’, Transp. Res. Record, J. Transp. Res. Board, 2017.
    24. 24)
      • 20. Smith, L., Beckman, R., Anson, D., et al: ‘TRANSIMS: transportation analysis and simulation system’. Fifth National Conf. on Transportation Planning Methods Applications – Volume II: A Compendium of Papers Based on a Conf. Held in Seattle, Washington, April 1995.
    25. 25)
      • 12. Hu, X., Chiu, Y.-C., Ma, Y.-L., et al: ‘Studying driving risk factors using multi-source mobile computing data’, Int. J. Transp. Sci. Technol, 2015, 4, (3), pp. 295312.
    26. 26)
      • 13. Hu, X., Chiu, Y.-C., Zhu, L.: ‘Behavior insights for an incentive-based active demand management platform’, Int. J. Transp. Sci. Technol, 2015, 4, (2), pp. 119133.
    27. 27)
      • 19. Ben-Akiva, M., Koutsopoulos, H., Mishalani, R., et al: ‘Simulation laboratory for evaluating dynamic traffic management systems’, J. Transp. Eng., 1997, 123, (4), pp. 283289.
    28. 28)
      • 7. Thomson, R., Richardson, D.: ‘A graph theory approach to road network generalisation’. Proc. of the ICA 17th Int. Cartographic Conf., ICA/ACI, 1995, pp. 18711880.
    29. 29)
      • 18. Peeta, S., Mahmassani, H.S.: ‘Multiple user classes real-time traffic assignment for online operations: a rolling horizon solution framework’, Transp. Res. C, Emerg. Technol., 1995, 3, (2), pp. 8398.
    30. 30)
      • 10. Zhu, L., Bao, Y., Wang, S.-G., et al: ‘Map-matching compatible with junction adjusting in vehicle navigation system’, in Zhihong, Q., Lei, C., Weilian, S., Tingkai, W., Huamin, Y. (Eds.): ‘Recent advances in computer science and information engineering’ (Springer, 2012), pp. 451457.
    31. 31)
      • 31. Zhu, L., Holden, J., Gonder, J., et al: ‘Green routing fuel saving opportunity assessment: a case study using large-scale real-world travel data’. 28th IEEE Intelligent Vehicles Symp., Redondo Beach, CA, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0287
Loading

Related content

content/journals/10.1049/iet-its.2016.0287
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address