access icon free Energy management of a dual-mode power-split powertrain based on the Pontryagin's minimum principle

A new dual-mode power-split device is introduced in this study for application in the transmission system of hybrid electric vehicles. The new system provides two modes of operation and a supervisory control strategy is responsible to determine the vehicle's present operating mode. Based on the selected mode, which is done according to the driving conditions, maximum efficiency and minimum fuel consumption are achieved. Pontryagin's minimum principle has been applied for designing an optimal control strategy during which the Hamiltonian is minimised. The Hamiltonian is calculated by using Pareto maps which provide best operating points of the engine according to the power demand. The simulation results show improvements in fuel consumption for the new system in comparison to the Toyota Hybrid System as the first commercialised and the most accepted and popular power-split powertrain system.

Inspec keywords: maximum principle; Pareto optimisation; control system synthesis; energy management systems; hybrid electric vehicles; power transmission (mechanical)

Other keywords: energy management; Toyota hybrid system; dual-mode power-split powertrain system; dual-mode power-split device; optimal control strategy; Hamiltonian minimization; Pareto maps; supervisory control strategy; Pontryagin's minimum principle; hybrid electric vehicles; minimum fuel consumption; transmission system

Subjects: Optimisation techniques; Transportation system control; Transportation; Optimisation techniques; Control system analysis and synthesis methods; Optimal control

References

    1. 1)
      • 8. Kumar, P.R., Varaiya, P.: ‘Stochastic systems: estimation, identification, and adaptive control’ (Prentice-Hall, New Jersey, 1986).
    2. 2)
      • 36. Olszewski, M.: ‘Evaluation of the 2010 toyota prius hybrid synergy drive system’. US Department of Energy Vehicle Technologies, Washington DC, USA, 2011.
    3. 3)
      • 32. Grewe, T.M., Conlon, B.M., Holmes, A.G.: ‘Defining the General Motors 2-Mode Hybrid Transmission’, SAE paper 2007–01–0273, 2007.
    4. 4)
      • 1. Hu, X., Zou, Y., Yang, Y.: ‘Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization’, Energy, 2016, 111, pp. 971980.
    5. 5)
      • 17. Chen, Z., Mi, C.C., Xu, J., et al: ‘Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks’, IEEE Trans. Veh. Technol., 2013, 63, pp. 15671580.
    6. 6)
      • 14. Yu, K., Yang, H., Kawabe, T., et al: ‘Model predictive control of a power-split hybrid electric vehicle system with slope preview’, Artif. Life Robot., 2015, 20, pp. 305314.
    7. 7)
      • 23. Onori, S., Serrao, L., Rizzoni, G.: ‘Adaptive equivalent consumption minimization strategy for hybrid electric vehicles’. Proc. of the ASME Dynamic Systems and Control Conf., Cambridge MA, USA, September 2010, pp. 499505.
    8. 8)
      • 18. Mansour, C., Clodic, D.: ‘Optimized energy management control for the Toyota hybrid system using dynamic programming on a predicted route with short computation time’, Int. J. Autom. Technol., 2012, 13, pp. 309324.
    9. 9)
      • 19. Chen, Z., Mi, C.C.: ‘An adaptive online energy management controller for power-split HEV based on dynamic programming and fuzzy logic’. IEEE Vehicle Power and Propulsion Conf., Dearborn MI, USA, September 2009, pp. 335339.
    10. 10)
      • 31. Ai, X., Anderson, S.: ‘An Electro-Mechanical Infinitely Variable Transmission Hybrid Electric Vehicles’. SAE paper 2005–01–0281, 2005.
    11. 11)
      • 10. Shi, D., Wang, S., Pisu, P., et al: ‘Modeling and optimal energy management of a power split hybrid electric vehicle’, Sci. Chin., Technol. Sci., 2017, 60, pp. 713725.
    12. 12)
      • 38. Li, Y., Kar, N.C.: ‘Advanced design approach of power split device of plug-in hybrid electric vehicles using dynamic programming’. IEEE Vehicle Power and Propulsion Conf., Chicago IL, USA, September 2011, pp. 16.
    13. 13)
      • 24. Rios, J., Pisu, P.: ‘A comparative analysis of optimization strategies for a power-Split powertrain hybrid electric vehicle’. Proc. of the FISITA World Automotive Congress, Beijing, China, November 2012, pp. 541550.
    14. 14)
      • 13. Sun, C., Hu, X., Mouran, S.J., et al: ‘Velocity predictors for predictive energy management in hybrid electric vehicles’, IEEE Trans. Control Syst. Technol., 2015, 23, pp. 11971204.
    15. 15)
      • 30. Holmes, A.G.,, Klemen, D., Schmidt, M.R..: ‘Electrically variable transmission with selective input split, compound split, neutral and reverse modes’. USA Patent 6,527,658 B2, 2003.
    16. 16)
      • 3. Zhang, X.: ‘Design of power split hybrid powertrains with multiple planetary gears and clutches’. PhD dissertation in Mechanical Engineering, University of Michigan, 2015.
    17. 17)
      • 37. Kim, N., Rousseau, A., Rask, E.: ‘Vehicle-level control analysis of 2010 Toyota prius based on test data’, Proc. Inst. Mech. Eng. D, J. Autom. Eng., 2012, 226, pp. 14831494.
    18. 18)
      • 6. Bellman, R.: ‘Dynamic programming’ (Princeton University Press, New Jersey, 1957).
    19. 19)
      • 39. Wang, W., Song, R., Guo, M., et al: ‘Analysis on compound-split configuration of power-split hybrid electric vehicle’, Mech. Mach. Theory, 2014, 78, pp. 272288.
    20. 20)
      • 16. Murgovski, N., Hu, X., Egardt, B.: ‘Computationally efficient energy management of a planetary gear hybrid electric vehicle’. IFAC Proc. Volumes, 2014, Vol47, pp. 48314836.
    21. 21)
      • 2. Hu, X., Martinez, C.M., Yang, Y.: ‘Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach’, Mech. Syst. Signal Process., 2017, 87, pp. 416.
    22. 22)
      • 5. Sciarretta, A., Guzzella, L.: ‘Control of hybrid electric vehicles: optimal energy management strategies’, IEEE Control Syst. Mag., 2007, 27, pp. 6070.
    23. 23)
      • 27. Xiang, C., Ding, F., Wang, W., et al: ‘Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control’, Appl. Energy, 2017, 189, pp. 640653.
    24. 24)
      • 33. Wei, X., Guzzella, L., Utkin, V., et al: ‘Model-Based fuel optimal control of hybrid electric vehicle using variable structure control systems’. ASME Int. Mechanical Engineering Congress and Exposition, Anaheim CA, USA, November 2004, pp. 714.
    25. 25)
      • 34. Serrao, L., Rizzoni, G.: ‘Optimal control of power split for a hybrid electric refuse vehicle’. Proc. of the American Control Conf., Seattle WA, USA, June 2008, pp. 44984503.
    26. 26)
      • 25. Liu, J.: ‘Modeling, configuration and control optimization of power-split hybrid vehicle’. PhD dissertation in Mechanical Engineering, University of Michigan, 2007.
    27. 27)
      • 20. Liu, J., Peng, H.: ‘Modeling and control of a power-split hybrid vehicle’, IEEE Trans. Control Syst. Technol., 2008, 16, pp. 12422151.
    28. 28)
      • 26. Mashadi, B., Emadi, A.M.: ‘Dual-mode power-split transmission for hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2010, 59, pp. 32233232.
    29. 29)
      • 11. Yang, Y., Hu, X., Pei, H., et al: ‘Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: dynamic programming approach’, Appl. Energy, 2016, 168, pp. 683690.
    30. 30)
      • 40. Yang, H., Cho, S., Kim, N., et al: ‘Analysis of planetary gear hybrid powertrain system part 1: Input split system’, Int. J. Autom. Technol., 2007, 8, pp. 771780.
    31. 31)
      • 9. Puterman, M.L.: ‘Markov decision processes: discrete stochastic dynamic programming’ (Wiley & Sons Inc., New Jersey, 2005, 1st edn).
    32. 32)
      • 22. Sun, D., Lin, X., Qin, D., et al: ‘Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus’, Chin. J. Mech. Eng., 2012, 25, pp. 11611170.
    33. 33)
      • 35. Sundström, O., Guzzella, L., Soltic, P.: ‘Torque-Assist hybrid electric powertrain sizing: from optimal control towards a sizing law’, IEEE Trans. Control Syst. Technol., 2010, 18, pp. 837849.
    34. 34)
      • 28. Hong, S., Choi, W., Ahn, A., et al: ‘Mode shift control for a dual-mode power-split type hybrid electric vehicle’, J. Autom. Eng., 2013, 228, pp. 12171231.
    35. 35)
      • 21. Škugor, B., Deur, J., Cipek, M.: ‘Pavković D. design of a power-split hybrid electric vehicle control system utilizing a rule-based controller and an equivalent consumption minimization strategy’, Proc. Inst. Mech. Eng. D, J. Autom. Eng., 2014, 228, pp. 631648.
    36. 36)
      • 29. Kang, J., Choi, W., Hong, S., et al: ‘Control strategy for dual-mode power-split HEV considering transmission efficiency’. IEEE Vehicle Power and Propulsion Conf., Chicago IL, USA, September 2011, pp. 16.
    37. 37)
      • 15. Zhang, J., Shen, T.: ‘Energy management strategy design for plug-in hybrid electric vehicles with continuation/GMRES algorithm’. Control Conf. (ECC), Linz, Austria, 2015.
    38. 38)
      • 4. Tai, S.F., Tan, C.W.: ‘A review of energy sources and energy management system in electric vehicles’, Renew. Sustain. Energy Rev., 2013, 20, pp. 82102.
    39. 39)
      • 12. Cao, J., Peng, J., He, H.: ‘Modeling and simulation research on power-split hybrid electric vehicle’, Energy Procedia, 2016, 104, pp. 354359.
    40. 40)
      • 7. Kirk, D.E.: ‘Optimal control theory: an Introduction’ (Prentice-Hall, New Jersey, 1970).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0281
Loading

Related content

content/journals/10.1049/iet-its.2016.0281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading