http://iet.metastore.ingenta.com
1887

How to support fuel-efficient driving?

How to support fuel-efficient driving?

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energy efficient personal transportation requires fuel-efficient and route aware driving. Driving coaching systems can provide to drivers all the information and guidance that is needed to learn these skills. However, persuading drivers to change their driving behaviour is a challenging task. The authors identify functional, design, safety, and persuasive features for systems supporting fuel-efficiency. Moreover, they analyse how these features are supported by state-of-the-art systems targeting reduced fuel consumption. Finally, based on their analysis, they discuss open issues and opportunities for future development of fuel-efficiency support systems. The literature and the reviewed research in this study illustrate the needs for overall situation assessment and benefits of careful and multifaceted approach for systems design when it comes to eco-driving: an effective system will make use of a versatile design toolkit in order to obtain enduring behavioural results.

References

    1. 1)
      • 1. Sivak, M., Schoettle, B.: ‘Eco-driving: strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy’, Transp. Policy, 2012, 22, pp. 9699.
    2. 2)
      • 2. Barkenbus, J.N.: ‘Eco-driving: an overlooked climate change initiative’, Energy Policy, 2010, 38, (2), pp. 762769.
    3. 3)
      • 3. Alam, Md.S., McNabola, A.: ‘A critical review and assessment of eco-driving policy & technology: benefits & limitations’, Transp. Policy, 2014, 35, pp. 4249.
    4. 4)
      • 4. Höltl, A., Trommer, S.: ‘Driver assistance systems for transport system efficiency: influencing factors on user acceptance’, J. Intell. Transp. Syst., 2013, 17, (3), pp. 245254.
    5. 5)
      • 5. Engelbrecht, J., Booysen, M.J., van Rooyen, G.J., et al: ‘Survey of smartphone-based sensing in vehicles for intelligent transportation system applications’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 924935.
    6. 6)
      • 6. Ploderer, B., Reitberger, W., Oinas-Kukkonen, H., et al: ‘Social interaction and reflection for behaviour change’, Pers. Ubiquitous Comput., 2014, 18, (7), pp. 16671676.
    7. 7)
      • 7. Beusen, B., Broekx, S., Denys, T., et al: ‘Using on-board logging devices to study the longer-term impact of an eco-driving course’, Transp. Res. D, Transp. Environ., 2009, 14, (7), pp. 514520.
    8. 8)
      • 8. Harvey, J., Thorpe, N., Fairchild, R.: ‘Attitudes towards and perceptions of eco-driving and the role of feedback systems’, Ergonomics, 2013, 56, (3), pp. 507521.
    9. 9)
      • 9. Tulusan, J., Staake, T., Fleisch, E.: ‘Providing eco-driving feedback to corporate car drivers: what impact does a smartphone application have on their fuel efficiency?’. Proc. ACM Conf. Ubiquitous Computing (UbiComp ‘12), New York, NY, USA, 2012, pp. 212215.
    10. 10)
      • 10. Oinas-Kukkonen, H., Harjumaa, M.: ‘Persuasive systems design: key issues, process model, and system features’, Commun. Assoc. Inf. Syst., 2009, 24, (1), pp. 485500.
    11. 11)
      • 11. Berkovsky, S., Freyne, J., Oinas-Kukkonen, H.: ‘Influencing individually: fusing personalization and persuasion’, ACM Trans. Inter. Intell. Syst. (TIIS), 2012, 2, (2), pp. 18.
    12. 12)
      • 12. Meschtscherjakov, A., Wilfinger, D., Scherndl, T., et al: ‘Acceptance of future persuasive in-car interfaces towards a more economic driving behaviour’. Proc. 1st Int. Conf. Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ‘09), New York, NY, USA, 2009, pp. 8188.
    13. 13)
      • 13. Schiessl, C., Fricke, N., Staubach, M.: ‘Identification and analysis of motives for eco-friendly driving within the eco-move project’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 4654.
    14. 14)
      • 14. Man, W.Y., Bie, J., Arem, B.: ‘User needs in green ITS: results of a questionnaire survey and proposal for green ITS design’, Int. J. Intell. Transp. Syst. Res., 2012, 10, (2), pp. 4755.
    15. 15)
      • 15. Brouwer, R.F.T., Stuiver, A., Hof, T., et al: ‘Personalised feedback and eco-driving: an explorative study’, Transp. Res. C Emerg. Technol., 2015, 58, (D), pp. 760771.
    16. 16)
      • 16. Vaezipour, A., Rakotonirainy, A., Haworth, N., et al: ‘Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: a qualitative study’, Transp. Res. A Policy Pract., 2017, 100, pp. 247263.
    17. 17)
      • 17. Jamson, A.H., Hibberd, D.L., Merat, N.: ‘Interface design considerations for an in-vehicle eco-driving assistance system’, Transp. Res. C Emerg. Technol., 2015, 58, (D), pp. 642656.
    18. 18)
      • 18. Tulusan, J., Soi, L., Paefgen, J., et al: ‘Eco-efficient feedback technologies: which eco-feedback types prefer drivers most?’. IEEE Int. Symp. World of Wireless, Mobile and Multimedia Networks (WoWMoM), Lucca, Italy, 2011, pp. 18.
    19. 19)
      • 19. McIlroy, R.C., Stanton, N.A., Harvey, C.: ‘Getting drivers to do the right thing: a review of the potential for safely reducing energy consumption through design’, IET Intell. Transp. Syst., 2014, 8, (4), pp. 388397.
    20. 20)
      • 20. Fors, C., Kircher, K., Ahlström, C.: ‘Interface design of eco-driving support systems – truck drivers’ preferences and behavioural compliance’, Transp. Res. C Emerg. Technol., 2015, 58, (D), pp. 706720.
    21. 21)
      • 21. Hof, T., Conde, L., Garcia, E., et al: ‘D11.1: A state of the art review and users’ expectations’, ecoDriver project deliverable, version 9, 2014. Available at http://www.ecodriver-project.eu/assets/Deliverabsles/Nov-2013/SP1/D111-A-state-of-the-art-review-and-users27-expectationsresubmitted.pdf, accessed 25 October 2017.
    22. 22)
      • 22. Vaezipour, A., Rakotonirainy, A., Haworth, N.: ‘Reviewing in-vehicle systems to improve fuel efficiency and road safety’, Procedia Manuf., 2015, 3, pp. 31923199.
    23. 23)
      • 23. König, W.: ‘Guidelines for user-centered development of DAS’, in Winner, H., Hakuli, S., Lotz, F., Singer, C. (Eds.): ‘Handbook of driver assistance systems’ (Springer, Cham, 2016), pp. 781796.
    24. 24)
      • 24. Gilman, E., Keskinarkaus, A., Tamminen, S., et al: ‘Personalized assistance for fuel-efficient driving’, J. Transp. Res. C Emerg. Technol., 2015, 58, (D), pp. 681705.
    25. 25)
      • 25. Zhang, C., Wan, L., Min, D.: ‘Persuasive design principles of car apps’, in Abramowicz, W., Alt, R., Franczyk, B. (Eds.): ‘Business information systems, BIS 2016. Lecture notes in business information processing’ (Springer, Cham, 2016), p. 255.
    26. 26)
      • 26. Dey, A.K.: ‘Understanding and using context’, Pers. Ubiquitous Comput., 2001, 5, (1), pp. 47.
    27. 27)
      • 27. Heimbürger, A., Kiyoki, Y., Kärkkäinen, T., et al: ‘On context modelling in systems and applications development’. Proc. 2011 Conf. Information Modelling and Knowledge Bases XXII, Amsterdam, The Netherlands, 2011, pp. 396412.
    28. 28)
      • 28. Jokela, T., Iivari, N., Matero, J., et al: ‘The standard of user-centered design and the standard definition of usability: analyzing ISO 13407 against ISO 9241-11’. Proc. Latin American Conf. Human-Computer Interaction, Rio de Janeiro, Brazil, 2003, pp. 5360.
    29. 29)
      • 29. ISO: ‘9241-11. Ergonomic requirements for office work with visual display terminals (VDTs)’ (The International Organization for Standardization, Geneva, Switzerland, 1998), p. 45.
    30. 30)
      • 30. Nielsen, J.: ‘Usability engineering’ (Morgan Kaufmann, San Diego, 1994).
    31. 31)
      • 31. Jenness, J.W., Singer, J., Walrath, J., et al: ‘Fuel economy driver interfaces: design range and driver opinions’. Task 1 and Task 2 Report. DOT HS 811 092, National Highway Traffic Safety Administration, Washington, DC, 2009.
    32. 32)
      • 32. Walker, G.H., Stanton, N.A., Young, M.S.: ‘Feedback and driver situation awareness (SA): a comparison of SA measures and contexts’, Transp. Res. F, Traffic Psychol. Behav., 2008, 11, (4), pp. 282299.
    33. 33)
      • 33. Stanton, N.A., Walker, G.H., Young, M.S., et al: ‘Changing drivers’ minds: the evaluation of an advanced driver coaching system’, Ergonomics, 2007, 50, (8), pp. 12091234.
    34. 34)
      • 34. Donges, E.: ‘Driver behavior models’, in Winner, H., Hakuli, S., Lotz, F., Singer, C. (Eds.): ‘Handbook of driver assistance systems’ (Springer, Cham, 2016), pp. 1933.
    35. 35)
      • 35. Dorn, L. (Ed.): ‘Driver behaviour and training (vol. V)’ (Ashgate Publishing, Farnham, UK, 2012).
    36. 36)
      • 36. Petty, R.E., Cacioppo, J.T.: ‘The elaboration likelihood model of persuasion’, Adv. Exp. Soc. Psychol., 1986, 19, pp. 123205.
    37. 37)
      • 37. Young, M.S., Birrell, S.A., Stanton, N.A.: ‘Safe driving in a green world: a review of driver performance benchmarks and technologies to support ‘smart’ driving’, Appl. Ergon., 2011, 42, (4), pp. 533539.
    38. 38)
      • 38. Birrell, S.A., Fowkes, M., Jennings, P.A.: ‘Effect of using an in-vehicle smart driving aid on real-world driver performance’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (4), pp. 18011810.
    39. 39)
      • 39. Wilhelm, U., Ebel, S., Weitzel, A.: ‘Functional safety of driver assistance systems and ISO 26262. Handbook of driver assistance systems’, 2015.
    40. 40)
      • 40. Rouzikhah, H., King, M., Rakotonirainy, A.: ‘Examining the effects of an eco-driving message on driver distraction’, Accident Anal. Prev., 2013, 50, pp. 975983.
    41. 41)
      • 41. Kurani, K.S., Axsen, J., Caperello, N., et al: ‘Learning from consumers: plug-in hybrid electric vehicle (PHEV) demonstration and consumer education’, Outreach, and Market Research Program. Institute of Transportation Studies. UC Davis: Institute of Transportation Studies (UCD), 2009.
    42. 42)
      • 42. Woodcock, A., Wellings, T., Binnersley, J.: ‘A review of HMI issues experienced by early adopters of low carbon vehicles’, Stanton, N.A. (Ed.): ‘Advances in human aspects of road and rail transportation’ (CRC Press, Boca Raton, 2012), pp. 2029.
    43. 43)
      • 43. Riener, A.: ‘Subliminal persuasion and its potential for driver behavior adaptation’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (1), pp. 7180.
    44. 44)
      • 44. Davidyuk, O., Gilman, E., Milara, I., et al: ‘Icompose: context-aware physical user interface for application composition’, Open Comput. Sci., 2011, 1, (4), pp. 442465.
    45. 45)
      • 45. Kang, L., Qi, B., Janecek, D., et al: ‘Ecodrive: a mobile sensing and control system for fuel efficient driving’. Proc. 21st Annual Int. Conf. Mobile Computing and Network, New York, NY, 2015, pp. 358371.
    46. 46)
      • 46. Fairchild, R.G., Brake, J.F., Thorpe, N., et al: ‘Using on-board driver feedback systems to encourage safe, ecological and efficient driving: the foot-LITE project’. Proc. Persuasive Technology and Digital Behaviour Intervention Symp. – 23rd Convention of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, Edinburgh, 2009.
    47. 47)
      • 47. Araújo, R., Igreja, Â., de Castro, R., et al: ‘Driving coach: a smartphone application to evaluate driving efficient patterns’. 2012 IEEE Intelligent Vehicles Symp. (IV), Alcala de Henares, 2012, pp. 10051010.
    48. 48)
      • 48. Rionda, A., Pañeda, X.G., Garcıa, R., et al: ‘Blended learning system for efficient professional driving’, Comput. Educ., 2014, 78, pp. 124139.
    49. 49)
      • 49. Muñoz-Organero, M., Magaña, V.C.: ‘Validating the impact on reducing fuel consumption by using an EcoDriving assistant based on traffic sign detection and optimal deceleration patterns’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 10231028.
    50. 50)
      • 50. Staubach, M., Schebitz, N., Köster, F., et al: ‘Evaluation of an eco-driving support system’, Transp. Res. F Traffic Psychol. Behav., 2014, 27, Part A, pp. 1121.
    51. 51)
      • 51. Kamal, M.A.S., Mukai, M., Murata, J., et al: ‘Ecological vehicle control on roads with up–down slopes’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 783794.
    52. 52)
      • 52. Magaña, V.C., Muñoz-Organero, M.: ‘Artemisa: a personal driving assistant for fuel saving’, IEEE Trans. Mob. Comput., 2016, 15, (10), pp. 24372451.
    53. 53)
      • 53. Orfila, O., Pierre, G.S., Messias, M.: ‘An android based ecodriving assistance system to improve safety and efficiency of internal combustion engine passenger cars’, Transp. Res. C Emerg. Technol., 2015, 58, Part D, pp. 772782.
    54. 54)
      • 54. Liimatainen, H.: ‘Utilization of fuel consumption data in an ecodriving incentive system for heavy-duty vehicle drivers’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 10871095.
    55. 55)
      • 55. Chou, W.-Y., Lin, Y.-C., Lin, Y.-H., et al: ‘Intelligent ecodriving suggestion system based on vehicle loading model’. Proc. 12th Int. Conf. ITS Telecommunication, Taipei, Taiwan, 2012, pp. 558562.
    56. 56)
      • 56. Ecker, R., Holzer, P., Broy, V., et al: ‘Ecochallenge: a race for efficiency’. Proc. 13th Int. Conf. Human Computer Interaction with Mobile Devices and Services (MobileHCI ‘11), New York, NY, USA, 2011, pp. 9194.
    57. 57)
      • 57. Guan, T., Frey, C.W.: ‘Fuel efficiency driver assistance system for manufacturer independent solutions’. 15th Int. IEEE Conf. Intelligent Transportation Systems, Anchorage, AK, USA, 2012, pp. 212217.
    58. 58)
      • 58. Wu, C., Zhao, G., Ou, B.: ‘A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles’, Transp. Res. D Transp. Environ., 2011, 16, (7), pp. 515524.
    59. 59)
      • 59. Vagg, C., Brace, C.J., Hari, D., et al: ‘Development and field trial of a driver assistance system to encourage eco-driving in light commercial vehicle fleets’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 796805.
    60. 60)
      • 60. Rommerskirchen, C.P., Helmbrecht, M., Bengler, K.J.: ‘The impact of an anticipatory ECO-driver assistant system in different complex driving situations on the driver behavior’, IEEE Intell. Transp. Syst. Mag., 2014, 6, (2), pp. 4556.
    61. 61)
      • 61. Bär, T., Kohlhaas, R., Zöllner, J.M., et al: ‘Anticipatory driving assistance for energy efficient driving’. 2011 IEEE Forum on Integrated and Sustainable Transportation System (FISTS), Vienna, Austria, 2011, pp. 16.
    62. 62)
      • 62. Stillwater, T., Kurani, K.S.: ‘Drivers discuss ecodriving feedback: goal setting, framing, and anchoring motivate new behaviors’, Transp. Res. F Traffic Psychol. Behav., 2013, 19, pp. 8596.
    63. 63)
      • 63. Fogg, B.J.: ‘A behavior model for persuasive design’. Proc. 4th Int. Conf. Persuasive Technology, 2009, Claremont, California, USA, article 40.
    64. 64)
      • 64. Oinas-Kukkonen, H.: ‘A foundation for the study of behavior change support systems’, Pers. Ubiquitous Comput., 2013, 17, (6), pp. 12231235.
    65. 65)
      • 65. Gilman, E., Zuo, Y., Pyykkönen, M., et al: ‘Delivering eco-driving information to drivers’. 11th ITS European Congress, Glasgow, Scotland, 6–9 June 2016.
    66. 66)
      • 66. Jittrapirom, P., Caiati, V., Feneri, A.-M., et al: ‘Mobility as a service: a critical review of definitions, assessments of schemes, and key challenges’, Urban Plan., 2017, 2, (2), pp. 1325.
    67. 67)
      • 67. Coppola, R., Morisio, M.: ‘Connected car: technologies, issues, future trends’, ACM Comput. Surv., 2016, 49, (3), pp. 136.
    68. 68)
      • 68. Saremi, F., Fatemieh, O., Ahmadi, H., et al: ‘Experiences with GreenGPS – fuel-efficient navigation using participatory sensing’, IEEE Trans. Mob. Comput., 2016, 15, (3), pp. 672689.
    69. 69)
      • 69. Sun, W., Liu, J., Zhang, H.: ‘When smart wearables meet intelligent vehicles: challenges and future directions’, IEEE Wirel. Commun., 2017, 24, (3), pp. 5865.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0280
Loading

Related content

content/journals/10.1049/iet-its.2016.0280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address