http://iet.metastore.ingenta.com
1887

Deep-learning architecture to forecast destinations of bus passengers from entry-only smart-card data

Deep-learning architecture to forecast destinations of bus passengers from entry-only smart-card data

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although smart-card data secures collective travel information on public transportation users, the reality is that only a few cities are equipped with an automatic fare collection (AFC) system that can provide user information for both boarding and alighting locations. Many researchers have delved into forecasting the destinations of smart-card users. Such effort, however, have never been validated with actual data on a large scale. In the present study, a deep-learning model was developed to estimate the destinations of bus passengers based on both entry-only smart-card data and land-use characteristics. A supervised machine-learning model was trained using exact information on both boarding and alighting. That information was provided by the AFC system in Seoul, Korea. The model performance was superior to that of the most prevalent schemes developed thus far.

References

    1. 1)
      • J. Barry , R. Newhouser , A. Rahbee .
        1. Barry, J., Newhouser, R., Rahbee, A., et al: ‘Origin and destination estimation in New York city with automated fare system data’, Transp. Res. Rec. J. Transp. Res. Board, 2002, 1817, (24), pp. 183187.
        . Transp. Res. Rec. J. Transp. Res. Board , 24 , 183 - 187
    2. 2)
      • J. Farzin .
        2. Farzin, J.: ‘Constructing an automated bus origin–destination matrix using fare card and global positioning system data in São Paulo, Brazil’, Transp. Res. Rec. J. Transp. Res. Board, 2008, 2072, (4), pp. 3037.
        . Transp. Res. Rec. J. Transp. Res. Board , 4 , 30 - 37
    3. 3)
      • W. Wang , J.P. Attanucci , N.H. Wilson .
        3. Wang, W., Attanucci, J.P., Wilson, N.H.: ‘Bus passenger origin–destination estimation and related analyses using automated data collection systems’, J. Public Transp., 2011, 14, (4), pp. 131150.
        . J. Public Transp. , 4 , 131 - 150
    4. 4)
      • M. Munizaga , F. Devillaine , C. Navarrete .
        4. Munizaga, M., Devillaine, F., Navarrete, C., et al: ‘Validating travel behavior estimated from smart card data’, Transp. Res. C, Emerg. Technol., 2014, 44, pp. 7079.
        . Transp. Res. C, Emerg. Technol. , 70 - 79
    5. 5)
      • F. Zhang , N.J. Yuan , Y. Wang .
        5. Zhang, F., Yuan, N.J., Wang, Y., et al: ‘Reconstructing individual mobility from smart card transactions: a collaborative space alignment approach’, Knowl. Inf. Syst., 2015, 44, (2), pp. 299323.
        . Knowl. Inf. Syst. , 2 , 299 - 323
    6. 6)
      • M. Munizaga , C. Palma .
        6. Munizaga, M., Palma, C.: ‘Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from Santiago, Chile’, Transp. Res. C, Emerg. Technol., 2012, 24, pp. 918.
        . Transp. Res. C, Emerg. Technol. , 9 - 18
    7. 7)
      • J. Chang , K. Park .
        7. Chang, J., Park, K.: ‘Estimation of the value of walking travel time by meta-analysis’, J. Transp. Res., 2010, 17, pp. 1322.
        . J. Transp. Res. , 13 - 22
    8. 8)
      • A.A. Nunes , T.G. Dias , J.F. Cunha .
        8. Nunes, A.A., Dias, T.G., Cunha, J.F.: ‘Passenger journey destination estimation from automated fare collection system data using spatial validation’, IEEE Trans. Intell. Transp. Syst., 2015, 17, (1), pp. 133142.
        . IEEE Trans. Intell. Transp. Syst. , 1 , 133 - 142
    9. 9)
      • N. Nassir , M. Hickman , Z.L. Ma .
        9. Nassir, N., Hickman, M., Ma, Z.L.: ‘Activity detection and transfer identification for public transit fare card data’, Transportation, 2015, 42, (4), pp. 683705.
        . Transportation , 4 , 683 - 705
    10. 10)
      • A.A. Alsger , M. Mesbah , L. Ferreira .
        10. Alsger, A.A., Mesbah, M., Ferreira, L., et al: ‘Use of smart card fare data to estimate public transport origin–destination matrix’, Transp. Res. Rec. J. Transp. Res. Board, 2015, 2535, pp. 8896.
        . Transp. Res. Rec. J. Transp. Res. Board , 88 - 96
    11. 11)
      • N. Nassir , A. Khani , S. Lee .
        11. Nassir, N., Khani, A., Lee, S., et al: ‘Transit stop-level origin–destination estimation through use of transit schedule and automated data collection system’, Transp. Res. Rec. J. Transp. Res. Board, 2011, 2263, (16), pp. 140150.
        . Transp. Res. Rec. J. Transp. Res. Board , 16 , 140 - 150
    12. 12)
      • J.J. Barry , R. Freimer , H. Slavin .
        12. Barry, J.J., Freimer, R., Slavin, H.: ‘Use of entry-only automatic fare collection data to estimate linked transit trips in New York City’, Transp. Res. Rec. J. Transp. Res. Board, 2009, 2112, pp. 5361.
        . Transp. Res. Rec. J. Transp. Res. Board , 53 - 61
    13. 13)
      • R. Chapleau , M. Trepanier , K.K. Chu .
        13. Chapleau, R., Trepanier, M., Chu, K.K.: ‘The ultimate survey for transit planning: complete information with smart card data and GIS, France’. Proc. of the Eighth Int. Conf. on Survey Methods in Transport: Harmonisation and Data Comparability, Annecy, France, 2008, pp. 2531.
        . Proc. of the Eighth Int. Conf. on Survey Methods in Transport: Harmonisation and Data Comparability , 25 - 31
    14. 14)
      • L. Zhang , S. Zhao , Y. Zhu .
        14. Zhang, L., Zhao, S., Zhu, Y., et al: ‘Study on the method of constructing bus stops OD matrix based on IC card data’. 2007 Int. Conf. on Wireless Communications, Networking and Mobile Computing, September 2007, pp. 31473150.
        . 2007 Int. Conf. on Wireless Communications, Networking and Mobile Computing , 3147 - 3150
    15. 15)
      • J. Zhao , A. Rahbee , N.H.M. Wilson .
        15. Zhao, J., Rahbee, A., Wilson, N.H.M.: ‘Estimating a rail passenger trip origin–destination matrix using automated data collection systems’, Comput. Civ. Infrastruct. Eng., 2007, 22, (5), pp. 376387.
        . Comput. Civ. Infrastruct. Eng. , 5 , 376 - 387
    16. 16)
      • M. Trépanier , N. Tranchant , R. Chapleau .
        16. Trépanier, M., Tranchant, N., Chapleau, R.: ‘Individual trip destination estimation in a transit smart card automated fare collection system’, J. Intell. Transp. Syst., 2007, 11, (1), pp. 114.
        . J. Intell. Transp. Syst. , 1 , 1 - 14
    17. 17)
      • A. Cui .
        17. Cui, A.: ‘Bus passenger origin–destination matrix estimation using automated data collection systems’. MS thesis, MIT, 2006.
        .
    18. 18)
      • J. Zhao .
        18. Zhao, J.: ‘The planning and analysis implications of automated data collection systems: rail transit OD matrix inference and path choice modeling examples’. MS thesis, MIT, 2004.
        .
    19. 19)
      • Y. Bengio , I.J. Goodfellow , A. Courville . (2016)
        19. Bengio, Y., Goodfellow, I.J., Courville, A.: ‘Deep learning’ (MIT Press, 2016).
        .
    20. 20)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’, Adv. Neural Inf. Process. Syst., 2012, 25, pp. 10971105.
        . Adv. Neural Inf. Process. Syst. , 1097 - 1105
    21. 21)
      • K. Kyoungtae , M. Jaehong , L. Inmook .
        21. Kyoungtae, K., Jaehong, M., Inmook, L.: ‘Analyzing passenger's tagging behavior using smart-card data’. Proc. of the 2014 Conf. of the Korean Society for Railway, Korea, October 2014, pp. 635638, in Korean.
        . Proc. of the 2014 Conf. of the Korean Society for Railway , 635 - 638
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0276
Loading

Related content

content/journals/10.1049/iet-its.2016.0276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address