access icon free Trip planning within a multimodal urban mobility

To address the current challenges of mobility in large urban areas, the authors wish to make practical the experience of multimodal travels, where a range of complementary transportation services are offered to an individual. Making multimodal travels is, however, still complex and the burden is let to the traveller. In this paper, the authors present their work for making the user experience of planning a trip in a multimodal mobility context simple and efficient. The authors recall the technical challenges and literature associated with such planning which must be truly multimodal, real-time and contextualised to the user preferences. The authors then describe the main features, differentiation, and advantages of the Xerox Trip Planner system, their solution for the computation of multimodal trips. The authors explain their path alternative generation method and a way to allow for more complex transfer mode sequences in the so-called round-based multimodal trip planning algorithms. The authors also present a comparative study with data from the city of Adelaide, Australia, which assesses the dynamic planning component of their solution with the other options available in this city.

Inspec keywords: real-time systems; transportation; traffic engineering computing

Other keywords: real-time; multimodal urban mobility; multimodal mobility context; user preferences; multimodal trips; user experience; differentiation; round-based multimodal trip planning algorithms; Xerox trip planner system; multimodal travels; complementary transportation services; path alternative generation method; complex transfer mode sequences

Subjects: Traffic engineering computing

References

    1. 1)
      • 21. Liu, L.: ‘Data model and algorithms for multimodal route planning with transportation networks’. PhD thesis, Technische Universität München, 2010.
    2. 2)
      • 6. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, 1, pp. 269271.
    3. 3)
      • 22. Dibbelt, J., Pajor, T., Wagner, D.: ‘User-constrained multi-Modal route planning’. Proc. Meeting on Algorithm Engineering & Experiments, ALENEX'12 (SIAM), 2012, pp. 118129.
    4. 4)
      • 17. Delling, D., Dibbelt, J., et al: ‘Computing multimodal journeys in practice’. Proc. 12th Int. Symp. on Experimental Algorithms, SEA'13, 2013, vol. 7933, pp. 260271.
    5. 5)
      • 1. Delling, D., Pajor, T., Werneck, R.F.: ‘Round-Based public transit routing’. Proc. Meeting on Algorithm Engineering & Experiments, ALENEX'12 (SIAM), 2012, pp. 130140.
    6. 6)
      • 13. Bast, H.: ‘Car or public transport—Two worlds’, in Albers, S., Alt, H., Näher, S. (Ed.): ‘Efficient algorithms’ (Springer, 2009), LNCS, 5760, pp. 355367.
    7. 7)
      • 19. Zhang, J., Arentze, T.A., et al: ‘Personalized multi-modal route planning: a preference measurement and learning-based approach’, J. Ubiquit. Syst. Pervasive Netw., 2012, 4, (1), pp. 2127.
    8. 8)
      • 24. ‘Adelaid metro transit feed data’, http://data.sa.gov.au/dataset/adelaide-metro-general-transit-feed, accessed October 2014.
    9. 9)
      • 2. Witt, S.: ‘Trip-Based public transit routing’. Proc. 23rd Annual European Symp. Algorithms – ESA 2015 (LNCS, 9294), Patras, Greece, 2015, pp. 10251036.
    10. 10)
      • 11. Brodal, G., Jacob, R.: ‘Time-dependent networks as models to achieve fast exact time-table queries’. Proc. Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS) Workshop 2003, 2004, pp. 315.
    11. 11)
      • 3. Antsfeld, L., Walsh, T.: ‘Finding multi-criteria optimal paths in multi-modal public transportation networks using the transit algorithm’. Proc. 19th ITS World Congress, Vienna, Austria, 2012.
    12. 12)
      • 20. Delling, D., Pajor, T., et al: ‘Accelerating multi-modal route planning by access-nodes’. Proc. 17th Annual European Symp. on Algorithms, ESA'09 (LNCS, 5757), pp. 587598.
    13. 13)
      • 25. ‘Only Moov’, https://www.onlymoov.com/, accessed March 2017.
    14. 14)
      • 26. ‘RATP’, http://www.ratp.fr/itineraires/fr/ratp/recherche-avancee, accessed March 2017.
    15. 15)
      • 23. Kirchler, D., Liberti, L., Calvo, R.: ‘Efficient computation of shortest paths in time-Dependent multi-Modal networks’, J. Exper. Algorithmics, 2014, 19, Article No. 2.5.
    16. 16)
      • 15. Martins, E.: ‘On a multicriteria shortest path problem’, Eur. J. Oper. Res., 1984, 16, (2), pp. 236245.
    17. 17)
      • 18. Bast, H., Brodesser, M., et al: ‘Result diversity for multi-Modal route planning’. Proc. 13th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'13), 2013.
    18. 18)
      • 4. Zografos, K.G., Androutsopoulos, K.N.: ‘Algorithms for itinerary planning in multimodal transportation networks’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 175184.
    19. 19)
      • 9. Berger, A., Delling, D., Gebhardt, A., et al: ‘Accelerating time-Dependent multi-Criteria timetable information is harder than expected’. Proc. 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'09), Dagstuhl Seminar Proc., 2009.
    20. 20)
      • 16. Dean, B.: ‘Continuous-time dynamic shortest path algorithms’. Master's thesis, Massachusetts Institute of Technology, 1999.
    21. 21)
      • 10. Pyrga, E., Schulz, F., et al: ‘Efficient models for timetable information in public transportation systems’, ACM J. Exper. Algorithmics, 2008, 12, Article No. 2.4.
    22. 22)
      • 12. Geisberger, R.: ‘Contraction of timetable networks with realistic transfers’. Proc. 9th Int. Conf. on Experimental Algorithms (SEA'10), 2010, pp. 7182.
    23. 23)
      • 14. Delling, D., Goldberg, A., et al: ‘Customizable route planning in road networks’, Transp. Sci., 2015.
    24. 24)
      • 8. Pyrga, E., Schulz, F., et al: ‘Experimental comparison of shortest path approaches for timetable information’. Proc. Algorithm Engineering & Experiments (ALNEX) workshop, New Orleans, LA, 2004.
    25. 25)
      • 7. Bast, H., Delling, D., Goldberg, A., et al: ‘Route planning in transportation networks’. (Microsoft Research, 2014), MSR-TR-2014-4.
    26. 26)
      • 5. Dibbelt, J., Pajor, T., et al: ‘Intriguingly simple and fast transit routing’. Proc. 12th Int. Symp. on Experimental Algorithms, SEA'13 (LNCS, 7933), 2013, pp. 4354.
    27. 27)
      • 27. Ciepłuch, B., Jacob, R., et al: ‘Comparison of the accuracy of openstreetmap for Ireland with google maps and bing maps’. Proc. Ninth Int. Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (University of Leicester), 20–23rd July 2010, pp. 337340.
    28. 28)
      • 28. Zielstra, D., Zipf, A.: ‘A comparative study of proprietary geodata and volunteered geographic information for Germany’. Proc. 13th AGILE Int. Conf. on Geographic Information Science, Guimarães, Portugal, 2010, pp. 115.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0265
Loading

Related content

content/journals/10.1049/iet-its.2016.0265
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading