http://iet.metastore.ingenta.com
1887

Rainfall-integrated traffic speed prediction using deep learning method

Rainfall-integrated traffic speed prediction using deep learning method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic information prediction is one of the most essential studies for traffic research, operation and management. The successful prediction of traffic speed is increasingly significant for the benefits of both road users and traffic authorities. However, accurate prediction is challenging, due to the stochastic feature of traffic flow and shallow model structure. Furthermore, environmental factors, such as rainfall influence, should also be incorporated to improve accuracy. Inspired by deep learning, this paper investigates the performance of deep belief network (DBN) and long short-term memory (LSTM) to conduct short-term traffic speed prediction with the consideration of rainfall impact as a non-traffic input. The deep learning models have the ability to learn complex features of traffic flow pattern under various rainfall conditions. To validate the performance of rainfall-integrated DBN and LSTM, the traffic detector data from an arterial in Beijing are utilised for model training and testing. The experiment results indicate that with the combination input of speed and additional rainfall data, deep learning models have better prediction accuracy over other existing models, and also yields improvements over the models without rainfall input. Furthermore, the LSTM can outperform the DBN to capture the time-series characteristics of traffic speed data.

References

    1. 1)
      • 1. Vlahogianni, E. I., Karlaftis, M. G., Golias, J. C.: ‘Short-term traffic forecasting: Where we are and where we're going’, Transp. Res. C, 2014, 43, pp. 319.
    2. 2)
      • 2. Dougherty, M.: ‘A review of neural networks applied to transport’, Transp. Res. C, 1995, 3, (4), pp. 247260.
    3. 3)
      • 3. Karlaftis, M. G., Vlahogianni, E. I.: ‘Statistical methods versus neural networks in transportation research: differences, similarities and some insights’, Transp. Res. C, 2011, 19, (3), pp. 387399.
    4. 4)
      • 4. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 21912201.
    5. 5)
      • 5. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    6. 6)
      • 6. Lemieux, J., Ma, Y.: ‘Vehicle speed prediction using seep learning’. Proc. Vehicle Power and Propulsion Conf. (VPPC), Montreal, Canada, October 2015, pp. 15.
    7. 7)
      • 7. Dunne, S., Ghosh, B.: ‘Weather adaptive traffic prediction using neurowavelet models’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 370379.
    8. 8)
      • 8. Ahmed, M. S., Cook, A. R.: ‘Analysis of freeway traffic time-series data by using Box-Jenkins techniques’, Transp. Res. Rec, 1979, 722, pp. 19.
    9. 9)
      • 9. Levin, M., Tsao, Y. D.: ‘On forecasting freeway occupancies and volumes (abridgment)’, Transp. Res. Rec., 1980, 773, pp. 4749.
    10. 10)
      • 10. Van Der Voort, M., Dougherty, M., Watson, S., et al: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. C, 1996, 4, (5), pp. 307318.
    11. 11)
      • 11. Williams, B. M., Hoel, L. A.: ‘Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results’, J. Transp. Eng., 2003, 129, (6), pp. 664672.
    12. 12)
      • 12. Chandra, S. R., Al-Deek, H.: ‘Predictions of freeway traffic speeds and volumes using vector autoregressive models’, J. Intell. Transp. Syst., 2009, 13, (2), pp. 5372.
    13. 13)
      • 13. Okutani, I., Stephanedes, Y. J.: ‘Dynamic prediction of traffic volume through Kalman filtering theory’, Transp. Res. B, 1984, 18, (1), pp. 111.
    14. 14)
      • 14. Chen, H., Grant-Muller, S.: ‘Use of sequential learning for short-term traffic flow forecasting’, Transp. Res. C, 2001, 9, (5), pp. 319336.
    15. 15)
      • 15. Chen, M., Chien, S.: ‘Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based’, Transp. Res. Rec., 2001, 1768, pp. 157161.
    16. 16)
      • 16. Chien, S. I. J., Kuchipudi, C. M.: ‘Dynamic travel time prediction with real-time and historic data’, J. Transp. Eng., 2003, 129, (6), pp. 608616.
    17. 17)
      • 17. Smith, B. L., Demetsky, M. J.: ‘Short-term traffic flow prediction: neural network approach’, Transp. Res. Rec., 1994, 1453, pp. 98104.
    18. 18)
      • 18. Dougherty, M. S., Cobbett, M. R.: ‘Short-term inter-urban traffic forecasts using neural networks’, Int. J. Forecast., 1997, 13, (1), pp. 2131.
    19. 19)
      • 19. Dia, H.: ‘An object-oriented neural network approach to short-term traffic forecasting’, Eur. J. Oper. Res., 2001, 131, (2), pp. 253261.
    20. 20)
      • 20. Park, J., Li, D., Murphey, Y. L., et al: ‘Real time vehicle speed prediction using a neural network traffic model’. Proc. 2011 Int. Joint Conf. Neural Networks (IJCNN), San Jose, USA, August 2011, pp. 29912996.
    21. 21)
      • 21. Ma, X., Tao, Z., Wang, Y., et al: ‘Long short-term memory neural network for traffic speed prediction using remote microwave sensor data’, Transp. Res. C, 2015, 54, pp. 187197.
    22. 22)
      • 22. Mohamed, A., Dahl, G., Hinton, G.: ‘Deep belief networks for phone recognition’. Proc. NIPS workshop on deep learning for speech recognition and related applications, Vancouver, Canada, December 2009, 1, (9), pp. 19.
    23. 23)
      • 23. Nair, V., Hinton, G. E.: ‘3D object recognition with deep belief nets’. Proc. NIPS Advances in Neural Information Processing Systems 22, Vancouver, Canada, December 2009, pp. 13391347.
    24. 24)
      • 24. Lee, H., Pham, P., Largman, Y., et al: ‘Unsupervised feature learning for audio classification using convolutional deep belief networks’. Proc. NIPS Advances in Neural Information Processing Systems 22, Vancouver, Canada, December 2009, pp. 10961104.
    25. 25)
      • 25. Lingras, P., Sharma, S., Zhong, M.: ‘Prediction of recreational travel using genetically designed regression and time-delay neural network models’, Transp. Res. Rec., 2002, 1805, pp. 1624.
    26. 26)
      • 26. Van Lint, J., Hoogendoorn, S., Van Zuylen, H., et al: ‘Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks’, Transp. Res. Rec., 2002, 1811, pp. 3039.
    27. 27)
      • 27. Ishak, S., Kotha, P., Alecsandru, C.: ‘Optimization of dynamic neural network performance for short-term traffic prediction’, Transp. Res. Rec., 2003, 1836, pp. 4556.
    28. 28)
      • 28. van Lint, J. W. C., Hoogendoorn, S. P., van Zuylen, H. J.: ‘Accurate freeway travel time prediction with state-space neural networks under missing data’, Transp. Res. C, 2005, 13, (5), pp. 347369.
    29. 29)
      • 29. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    30. 30)
      • 30. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    31. 31)
      • 31. Hinton, G. E., Osindero, S., The, Y. W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    32. 32)
      • 32. Hinton, G. E.: ‘Training products of experts by minimizing contrastive divergence’, Neural Comput., 2002, 14, (8), pp. 17711800.
    33. 33)
      • 33. Hinton, G. E.: ‘Learning multiple layers of representation’, Trends Cogn. Sci, 2007, 11, (10), pp. 428434.
    34. 34)
      • 34. Tanner, J. C.: ‘Effect of weather on traffic flow’, Nature, 1952, 4290, p. 107.
    35. 35)
      • 35. Ibrahim, A. T., Hall, F. L.: ‘Effects of adverse weather conditions on speed-flow-occupancy relationships’, Transp. Res. Rec., 1994, 1457, pp. 184191.
    36. 36)
      • 36. Brilon, W., Ponzlet, M.: ‘Variability of speed-flow relationships on German Autobahns’, Transp. Res. Rec., 1996, 1555, pp. 9198.
    37. 37)
      • 37. Chung, E., Ohtani, O., Warita, H., et al: ‘Does weather affect highway capacity’. Proc. 5th Int. Symp. on Highway Capacity and Quality of Service, Yakoma, Japan, July 2006, pp. 18.
    38. 38)
      • 38. Agbolosu-Amison, S. J., Sadek, A. W., ElDessouki, W.: ‘Inclement weather and traffic flow at signalized intersections: case study from northern New England’, Transp. Res. Rec., 2004, 1867, pp. 163171.
    39. 39)
      • 39. Camacho, F. J., García, A., Belda, E.: ‘Analysis of impact of adverse weather on freeway free-flow speed in Spain’, Transp. Res. Rec., 2010, 2168, pp. 150159.
    40. 40)
      • 40. Akin, D., Sisiopiku, V. P., Skabardonis, A.: ‘Impacts of weather on traffic flow characteristics of urban freeways in Istanbul’, Proc. Soc. Behav. Sci., 2011, 16, pp. 8999.
    41. 41)
      • 41. Yuhan, J., Yiman, D., Jianping, W., et al: ‘Impacts of rainfall weather on urban traffic in Beijing: analysis and modeling’. Proc. 94th Transportation Research Board Annual Meeting, Washington, DC, USA, January 2015, pp. 113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0257
Loading

Related content

content/journals/10.1049/iet-its.2016.0257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address