http://iet.metastore.ingenta.com
1887

Smartphone-based crowdsourcing for position estimation of public transport vehicles

Smartphone-based crowdsourcing for position estimation of public transport vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this research, a real-time positioning method, which utilises crowdsourced positioning data obtained from smartphone GPS is developed. Such vehicle location information obtained from crowdsourcing and smartphones in public transport could replace traditional automatic vehicle location systems. However, the location information from smartphone GPS is more erroneous. The proposed methodology serves as an alternative to existing positioning methods to improve the vehicle positioning accuracy. The developed enhanced particle filter algorithm takes smartphone GPS positioning data [from multiple passengers in a single transit vehicle (e.g. bus)] as input data. This ‘crowdsourced’ data can then be utilised to calculate the vehicles’ positioning information with better accuracy using the developed enhanced particle filter algorithm. The developed algorithm was tested using data collected on 14 different bus routes in urban and suburban areas of Mumbai, India, and it was identified that the algorithm is effective in reducing the average error up to 21.3% from a regular smartphone GPS and 10% from extended Kalman filter algorithm and was able to curtail positioning error within 8.672 m (average over 14 routes).

References

    1. 1)
      • N.R. Velaga , J.D. Nelson , S. Sripada .
        1. Velaga, N.R., Nelson, J.D., Sripada, S., et al: ‘Development of a hybrid map-matching algorithm for rural passenger information systems via mobile phones and crowd-sourcing’, J. Comput. Civil Eng. ASCE, 2013, 27, (6), pp. 732742.
        . J. Comput. Civil Eng. ASCE , 6 , 732 - 742
    2. 2)
      • N.R. Velaga , K. Pangbourne .
        2. Velaga, N.R., Pangbourne, K.: ‘Achieving genuinely dynamic road user charging: issues with a GNSS-based approach’, J. Transp. Geogr., 2014, 34, pp. 243253.
        . J. Transp. Geogr. , 243 - 253
    3. 3)
      • B.R. Chang , H.F. Tsai , C.P. Young .
        3. Chang, B.R., Tsai, H.F., Young, C.P.: ‘Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing’, Expert Syst. Appl., 2010, 37, (3), pp. 24392450.
        . Expert Syst. Appl. , 3 , 2439 - 2450
    4. 4)
      • Z. Shen , J. Georgy , M.J. Korenberg .
        4. Shen, Z., Georgy, J., Korenberg, M.J., et al: ‘Low cost two dimensional navigation using an augmented Kalman filter/fast orthogonal search module for the integration of reduced inertial sensor system and global positioning system’, Transp. Res. Part C, 2011, 19, (6), pp. 11111131.
        . Transp. Res. Part C , 6 , 1111 - 1131
    5. 5)
      • N.R. Velaga , M.A. Quddus , A.L. Bristow .
        5. Velaga, N.R., Quddus, M.A., Bristow, A.L.: ‘Improving the performance of a topological map-matching algorithm through error detection and correction’, J. Intell. Transp. Syst., 2012, 16, (3), pp. 147158.
        . J. Intell. Transp. Syst. , 3 , 147 - 158
    6. 6)
      • N.R. Velaga , M.A. Quddus , A.L. Bristow .
        6. Velaga, N.R., Quddus, M.A., Bristow, A.L., et al: ‘Map-aided integrity monitoring of a land vehicle navigation system’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 848858.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 848 - 858
    7. 7)
      • P.J. Sheldon .
        7. Sheldon, P.J.: ‘Destination information systems’, Ann. Tourism Res., 1993, 20, (4), pp. 633649.
        . Ann. Tourism Res. , 4 , 633 - 649
    8. 8)
      • D. Corsar , P. Edwards , J.D. Nelson .
        8. Corsar, D., Edwards, P., Nelson, J.D., et al: ‘Linking open data and the crowd for real-time passenger information’, J. Web Semant., 2017, 43, pp. 1824. doi: http://dx.doi.org/10.1016/j.websem.2017.02.002.
        . J. Web Semant. , 18 - 24
    9. 9)
      • M. Chaudhary , A. Bansal , D. Bansal .
        9. Chaudhary, M., Bansal, A., Bansal, D., et al: ‘Finding occupancy in buses using crowdsourced data from smartphones’. ICDCN ‘16, Singapore, 4–7 January 2016.
        . ICDCN ‘16
    10. 10)
      • V.V. Lekshmy , D. Corsar , S. Joshi .
        10. Lekshmy, V.V., Corsar, D., Joshi, S., et al: ‘Utilising the crowd to support a smart mobility system’. 96th Annual Meeting of the Transportation Research Board (TRB) of National Academies, Washington, DC, USA, 8–12 January 2017.
        . 96th Annual Meeting of the Transportation Research Board (TRB) of National Academies
    11. 11)
      • J. Howe .
        11. Howe, J.: ‘The rise of crowdsourcing’, Wired, June 2006.
        .
    12. 12)
      • D. Corsar , P. Edwards , C. Baillie .
        12. Corsar, D., Edwards, P., Baillie, C., et al: ‘Getthere: a rural passenger information system utilising linked data & citizen sensing’. Proc. of the 2013th Int. Conf. on Posters & Demonstrations Track, 2013, vol. 1035, pp. 8588.
        . Proc. of the 2013th Int. Conf. on Posters & Demonstrations Track , 85 - 88
    13. 13)
      • N.R. Velaga , M. Beecroft , J.D. Nelson .
        13. Velaga, N.R., Beecroft, M., Nelson, J.D., et al: ‘Transport poverty meets the digital divide: accessibility and connectivity in rural communities’, J. Transp. Geogr., 2012, 21, pp. 102112.
        . J. Transp. Geogr. , 102 - 112
    14. 14)
      • P. Marchetta , E. Natale , A. Salvi .
        14. Marchetta, P., Natale, E., Salvi, A., et al: ‘Trusted information and security in smart mobility scenarios: the case of s2-move project’. Algorithms and Architectures for Parallel Processing 2013, 2013, pp. 185192.
        . Algorithms and Architectures for Parallel Processing 2013 , 185 - 192
    15. 15)
      • P.J. Forbes , S. Wells , J. Masthoff .
        15. Forbes, P.J., Wells, S., Masthoff, J., et al: ‘SUPERHUB: integrating behaviour change theories into a sustainable urban-mobility platform’. Proc. of Workshops Using Technology to Facilitate Behaviour Change and Support Healthy, Sustainable Living, BCS HCI, 2012.
        . Proc. of Workshops Using Technology to Facilitate Behaviour Change and Support Healthy, Sustainable Living, BCS HCI
    16. 16)
      • G. Motta , D. Sacco , A. Belloni .
        16. Motta, G., Sacco, D., Belloni, A., et al: ‘A system for green personal integrated mobility: a research in progress’. 2013 IEEE Int. Conf. on In Service Operations and Logistics, and Informatics (SOLI), July 2013, pp. 16.
        . 2013 IEEE Int. Conf. on In Service Operations and Logistics, and Informatics (SOLI) , 1 - 6
    17. 17)
      • W. Neale , D. Danaher , S. McDonough .
        17. Neale, W., Danaher, D., McDonough, S., et al: ‘Data acquisition using smart phone applications’. SAE Technical Paper 2016-01-1461, 2016.
        .
    18. 18)
      • Y.-T. Chuang , C.W. Yi , Y.C. Lu .
        18. Chuang, Y.-T., Yi, C.W., Lu, Y.C., et al: ‘Itraffic: a smartphone-based traffic information system’. 42nd Int. Conf. on Parallel Processing, 2013.
        . 42nd Int. Conf. on Parallel Processing
    19. 19)
      • M.A. Quddus .
        19. Quddus, M.A.: ‘High integrity map matching algorithms for advanced transport telematics applications’. PhD thesis, Centre for Transport Studies, Imperial College London, UK, 2006.
        .
    20. 20)
      • M.K. Kiran , N.R. Velaga , R.A.A.J. Ramasankaran .
        20. Kiran, M.K., Velaga, N.R., Ramasankaran, R.A.A.J.: ‘Development of two-stage extended Kalman filter for vehicle tracking from GPS enabled smart phones through crowd-sourcing’. 14th World Conf. on Transport Research – WCTR, Shanghai, China, 10–15 July 2016.
        . 14th World Conf. on Transport Research – WCTR
    21. 21)
      • N. Bergman .
        21. Bergman, N.: ‘Recursive Bayesian estimation: navigation and tracking applications’. PhD dissertation, Linköping University, Linköping, Sweden, 1999.
        .
    22. 22)
      • P. Zandbergen , S.J. Barbeau .
        22. Zandbergen, P., Barbeau, S.J.: ‘Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones’, J. Navig., 2011, 64, (03), pp. 381399.
        . J. Navig. , 3 , 381 - 399
    23. 23)
      • J. Zimmerman , A. Tomasic , C. Garrod .
        23. Zimmerman, J., Tomasic, A., Garrod, C., et al: ‘Field trial of Tiramisu: crowd-sourcing bus arrival times to spur co-design’. Conf. on Human–Computer Interaction (CHI), Vancouver, BC, Canada, 2011.
        . Conf. on Human–Computer Interaction (CHI)
    24. 24)
      • R. Schweiger , H. Neumann , W. Ritter .
        24. Schweiger, R., Neumann, H., Ritter, W.: ‘Multiple-cue data fusion with particle filters for vehicle detection in night view automotive applications’. Proc. IEEE Intelligent Vehicles Symp. 2005, 2005.
        . Proc. IEEE Intelligent Vehicles Symp. 2005
    25. 25)
      • K. Wendlandt , M. Khider , M. Angermann .
        25. Wendlandt, K., Khider, M., Angermann, M., et al: ‘Continuous location and direction estimation with multiple sensors using particle filtering’. 2006 IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, 2006.
        . 2006 IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems
    26. 26)
      • D.C. Salmon , D.M. Bevly .
        26. Salmon, D.C., Bevly, D.M.: ‘An exploration of low-cost sensor and vehicle model solutions for ground vehicle navigation’. Position, Location and Navigation Symp. – PLANS 2014, 2014 IEEE/ION, May 2014, pp. 462471.
        . Position, Location and Navigation Symp. – PLANS 2014, 2014 IEEE/ION , 462 - 471
    27. 27)
      • L. Du , N. Liu , R. Fang .
        27. Du, L., Liu, N., Fang, R., et al: ‘A cooperative positioning scheme based on extended Kalman filter for curve warning systems’, Adv. Mater. Res., 2014, 915–916, pp. 11891193.
        . Adv. Mater. Res. , 1189 - 1193
    28. 28)
      • X. Wang , W. Ni .
        28. Wang, X., Ni, W.: ‘An improved particle filter and its application to an INS/GPS integrated navigation system in a serious noisy scenario’, Meas. Sci. Technol., 2016, 27, (9), pp. 110.
        . Meas. Sci. Technol. , 9 , 1 - 10
    29. 29)
      • N.R. Velaga , A. Sathiaseelan .
        29. Velaga, N.R., Sathiaseelan, A.: ‘Role of location based technologies in intelligent transportation systems’, Asian J. Inf. Technol., 2011, 10, (6), pp. 227233.
        . Asian J. Inf. Technol. , 6 , 227 - 233
    30. 30)
      • M. Venanzi .
        30. Venanzi, M.: ‘Learning models for data fusion and spatial regression with untrustworthy crowdsourced information’. Dissertation, University of Southampton, 2013, pp. 1621.
        . , 16 - 21
    31. 31)
      • J.R. Raol . (2009)
        31. Raol, J.R.: ‘Multi-sensor data fusion with MATLAB®’ (CRC Press, Boca Raton, Florida, USA, 2009), pp. 5178.
        .
    32. 32)
      • K. Annapureddy , K. Finlow-Bates .
        32. Annapureddy, K., Finlow-Bates, K.: ‘Navigation using crowdsourcing data’. US Patent No. 9,336,681, 10 May 2016.
        .
    33. 33)
      • M.S. Arulampalam , S. Maskell , N. Gordon .
        33. Arulampalam, M.S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 107113.
        . IEEE Trans. Signal Process. , 2 , 107 - 113
    34. 34)
      • L. Zhao , W.Y. Ochieng , M.A. Quddus .
        34. Zhao, L., Ochieng, W.Y., Quddus, M.A., et al: ‘An extended Kalman filter algorithm for integrating GPS and low-cost dead reckoning system data for vehicle performance and emissions monitoring’, J. Navig., 2003, 56, pp. 257275.
        . J. Navig. , 257 - 275
    35. 35)
      • N.J. Gordon , D.J. Salmond , A.F.M. Smith .
        35. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: ‘Novel approach to nonlinear/non-Gaussian Bayesian state estimation’, IEE Proc. F (Radar Signal Process.), 1993, 140, (2), pp. 107113.
        . IEE Proc. F (Radar Signal Process.) , 2 , 107 - 113
    36. 36)
      • S. Yin , X. Zhu .
        36. Yin, S., Zhu, X.: ‘Intelligent particle filter and its application to fault detection of nonlinear system’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38523861.
        . IEEE Trans. Ind. Electron. , 6 , 3852 - 3861
    37. 37)
      • D. Seliger .
        37. Seliger, D.: ‘State estimation: particle filter’. Technical Report, Programming and Software Technique, June 2012.
        .
    38. 38)
      • T. Andrews .
        38. Andrews, T.: ‘Computation time comparison between Matlab and C++ using launch windows’, 2012.
        .
    39. 39)
      • W.H. Greene . (2003)
        39. Greene, W.H.: ‘Econometric analysis’ (Pearson Education India, 2003).
        .
    40. 40)
      • N.R. Velaga , M.A. Quddus , A.L. Bristow .
        40. Velaga, N.R., Quddus, M.A., Bristow, A.L.: ‘Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems’, Transp. Res. C: Emerg. Technol., 2009, 17, (6), pp. 672683.
        . Transp. Res. C: Emerg. Technol. , 6 , 672 - 683
    41. 41)
      • N.R. Velaga .
        41. Velaga, N.R.: ‘Development of a weight-based topological map-matching algorithm and an integrity method for location-based’. PhD thesis, Loughborough University, 2010.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0247
Loading

Related content

content/journals/10.1049/iet-its.2016.0247
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address