access icon free Bifurcation of lane change on highway for large bus

In this study, a new method is proposed for analysing the non-linear dynamics and stability in lane changes on highways by large buses. Unlike most of the literature associated with a simulated linear dynamic model for large buses, a verified 4DOF mechanical model with non-linear tire based on vehicle test is used in the lane-change simulation, including sinusoidal steering and steer returning. According to Jacobian matrix eigenvalues of the vehicle model, bifurcations of steady steering, sinusoidal steering and steer returning with disturbance on highways are investigated using a numerical method. The numerical simulation results reveal that Hopf bifurcations are identified in steady and sinusoidal steering conditions, which translates into an oscillatory behaviour leading to instability. Various equilibrium forms of stability are found, as well as saddle and Hopf bifurcations with disturbance ζ variety. The derived knowledge of the bifurcations set is hugely important to fully understand the actual dynamic motions of vehicles when lane changing on an even surface. It is a valuable reference for safety design of large buses to improve the traffic safety of driver–vehicle–road closed-loop system.

Inspec keywords: Jacobian matrices; nonlinear dynamical systems; stability; road vehicles; roads; steering systems; eigenvalues and eigenfunctions; bifurcation

Other keywords: vehicle model; traffic safety; 4DOF mechanical model; steer returning; lane-change simulation; safety design; sinusoidal steering; lane change bifurcation; Jacobian matrix eigenvalues; nonlinear dynamics analysis; driver-vehicle-road closed-loop system; Hopf bifurcations; simulated linear dynamic model; steady steering

Subjects: Road-traffic system control; Nonlinear control systems; Algebra; Stability in control theory

References

    1. 1)
      • 48. Huang, R., Liang, H., Zhao, P., et al: ‘Intent-estimation-and motion-model-based collision avoidance method for autonomous vehicles in urban environments’, Appl. Sci., 2017, 7, (5), pp. 457477.
    2. 2)
      • 51. Itoh, M., Inagaki, T.: ‘Design and evaluation of steering protection for avoiding collisions during a lane change’, Ergonomics, 2014, 57, (3), pp. 361373.
    3. 3)
      • 26. Polach, O., Kaiser, I.: ‘Comparison of methods analyzing bifurcation and hunting of complex rail vehicle models’, J. Comput. Nonlinear Dyn., 2012, 8, (7), pp. 614620.
    4. 4)
      • 58. Lacombe, J.: ‘Tire model for simulation of vehicle motion on high and low friction road surface’. Proc. of the 2000 Winter Simulation Conf., Orlando, America, December 2000, pp. 10251034.
    5. 5)
      • 38. Rodrick, D., Bhise, V., Jothi, V.: ‘Effects of driver and secondary task characteristics on lane change test performance’, Hum. Factors Ergon. Manuf., 2013, 23, (6), pp. 560572.
    6. 6)
      • 3. One, E., Hosoe, S., Tuan, H., et al: ‘Robust stabilization of vehicle dynamics by active front wheel steering control’. Proc. of the 35th IEEE Conf. on Decision and Control, Kobe, Japan, December 1996, pp. 17771782.
    7. 7)
      • 40. Haleem, K., Gan, A.: ‘Effect of driver's age and side of impact on crash severity along urban freeways: a mixed logit approach’, J. Saf. Res., 2013, 46, pp. 6776.
    8. 8)
      • 32. Tang, T.Q., Chen, L., Wu, Y.H., et al: ‘A macro traffic flow model accounting for real-time traffic state’, Physica A, 2015, 437, pp. 5567.
    9. 9)
      • 4. One, E., Hosoe, S., Tuan, H., et al: ‘Bifurcation in vehicle dynamics and robust front wheel steering control’, IEEE Trans. Control Syst. Technol., 1998, 6, (3), pp. 412420.
    10. 10)
      • 24. Lu, J.W., Xin, J.Y., Lee, J.K., et al: ‘Dynamic behavior analysis of vehicle shimmy system with consideration of clearance in steering linkage mechanism’. Proc. of the ASME 2012 Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf., Chicago, America, August 2012, pp. 471478.
    11. 11)
      • 16. Li, S.H, ., , Yang, S.P., Chen, L.Q.: ‘A nonlinear vehicle–road coupled model for dynamics research’, J. Comput. Nonlinear Dyn., 1996, (9), pp. 281304.
    12. 12)
      • 7. Sadri, S., Wu, C.: ‘Stability analysis of a nonlinear vehicle model in plane motion using the concept of Lyapunov exponents’, Veh. Syst. Dyn., 2013, 51, (6), pp. 906924.
    13. 13)
      • 56. Pacejka, H.B.: ‘Tire and vehicle dynamics’ (Butterworth-Heinemann., London, 2006, 3rd edn. 2012).
    14. 14)
      • 42. Zhang, R.H., He, Z.C., Wang, H.W., et al: ‘Study on self-tuning tyre friction control for developing main-servo loop integrated chassis control system’, IEEE Access, 2017, 5, pp. 66496660.
    15. 15)
      • 47. Ahn, D., Park, H., Hwang, S., et al: ‘Reliable identification of vehicle-boarding actions based on fuzzy inference system’, Sensors, 2017, 17, (2), pp. 333342.
    16. 16)
      • 18. Wang, X.B., Shi, S.M.: ‘Analysis of vehicle steering and driving bifurcation characteristics’, Math. Probl. Eng., 2015, 2015, (6), pp. 116.
    17. 17)
      • 41. Zhang, R.H., Li, K.N., He, Z.C., et al: ‘Advanced emergency braking control based on a nonlinear model predictive algorithm for intelligent vehicles’, Appl. Sci., 2017, 7, (5), pp. 504522.
    18. 18)
      • 36. Tang, T.Q., Huang, H.J., Shang, H.Y.: ‘An extended macro traffic flow model accounting for the driver's bounded rationality and numerical tests’, Phys. A, Stat. Mech. Appl., 2017, 468, pp. 322333.
    19. 19)
      • 2. Samsundar, J., Huston, J.C.: ‘Estimating lateral stability region of a nonlinear 2 degree-of-freedom vehicle’, SAE Paper, 1998, doi: 10.4271/981172.
    20. 20)
      • 10. Hu, H.Y., Wu, Z.Q.: ‘Stability and Hopf bifurcation of four-wheel-steering vehicles involving driver's delay’, Nonlinear Dyn., 2000, 22, pp. 361374.
    21. 21)
      • 23. Wei, D.G., Xu, K., Jiang, Y.B., et al: ‘Hopf bifurcation characteristics of dual-front axle self-excited shimmy system for heavy truck considering dry friction’, Shock Vib., 2015, (1), pp. 120.
    22. 22)
      • 57. Bakker, E., Nyborg, L., Pacejka, H.B.: ‘Tire modeling for use in vehicle dynamics studies’. SAE Paper 870421, 1987, pp. 115.
    23. 23)
      • 45. Llorca, C., Moreno, A.T., Garcia, A.: ‘Modelling vehicles acceleration during overtaking manoeuvres’, IET Intell. Transp. Syst., 2016, 10, (3), pp. 206215.
    24. 24)
      • 27. Wu, X.W., Chi, M.R.: ‘Parameters study of hopf bifurcation in railway vehicle system’, J. Comput. Nonlinear Dyn., 2014, 10, (3), pp. 4353.
    25. 25)
      • 52. Lee, J., Choi, J., Yi, K., et al: ‘Lane-keeping assistance control algorithm using differential braking to prevent unintended lane departures’, Control Eng. Pract., 2014, 23, (2), pp. 113.
    26. 26)
      • 1. Inagaki, S., Kshiro, I., Yamamoto, M.: ‘Analysis of vehicle stability in critical cornering using phase plane method’, JSAE Rev., 1994, 16, (2), pp. 216216(1).
    27. 27)
      • 17. Liu, L., Shi, S.M., Shen, S.W., et al: ‘Vehicle planar motion stability study for tires working in extremely nonlinear region’, Chin. J. Mech. Eng., 2010, 23, (2), pp. 200209.
    28. 28)
      • 12. Naik, R.D., Singru, P.M.: ‘Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, (8), pp. 33973410.
    29. 29)
      • 11. Orosz, G., Krauskopf, B., Wilson, R.E.: ‘Bifurcations and multiple traffic jams in a vehicle-following model with reaction-time delay’, Physica D, 2005, 211, pp. 277293.
    30. 30)
      • 31. Tang, T.Q., Yu, Q., Huang, H.J., et al: ‘Analyzing the travel time of car-following model on an open road’, Mod. Phys. Lett. B, 2015, 29, (12), p. 1550055.
    31. 31)
      • 28. Tang, T.Q., Wang, Y.P., Yang, X.B., et al: ‘A new car-following model accounting for varying road condition’, Nonlinear Dyn., 2012, 70, pp. 13971405.
    32. 32)
      • 21. Li, Y.P., Chen, S.Y.: ‘Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method’, Nonlinear Dyn., 2016, 83, (1–2), pp. 941950.
    33. 33)
      • 55. Wang, Z., Deng, W.W., Zhang, S.M., et al: ‘Vehicle automatic lane changing based on model predictive control’, SAE Int. J. Passenger Cars Electron, 2016, 9, (1), pp. 231236.
    34. 34)
      • 44. Funke, J., Gerdes, J.C.: ‘Simple clothoid lane change trajectories for automated vehicles incorporating friction constraints’, J. Dyn. Syst. Meas. Control, 2016, 138, (2), pp. 2635.
    35. 35)
      • 20. Yang, X.J., Wang, Z.C., Zhu, S.L., et al: ‘Real-time tracking of the closest bifurcation for vehicle steady-state cornering stability’, Trans. Chin. Soc. Agric. Mach., 2009, 40, (1), pp. 2025(in Chinese with English abstract).
    36. 36)
      • 53. Park, M., Lee, S., Kim, M., et al: ‘Integrated differential braking and electric power steering control for advanced lane-change assist systems’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2015, 229, (7), pp. 924943.
    37. 37)
      • 19. Ran, S.H., Besselink, I., Nijmeijer, H.: ‘Application of nonlinear tyre models to analyse shimmy’, Veh. Syst. Dyn., 2014, 52, (sup1), pp. 387404.
    38. 38)
      • 15. Liu, Z.H., Guy, P., Paul, B.: ‘Global bifurcation analysis of nonlinear road vehicle system’, J. Comput. Nonlinear Dyn., 2007, 2, pp. 308315.
    39. 39)
      • 34. Tang, T.Q., Wang, Y.P., Yang, X.B., et al: ‘A multilane traffic flow model accounting for lane width, lane-changing and the number of lanes’, Netw. Spat. Econ., 2014, 14, (3), pp. 465483.
    40. 40)
      • 5. Liaw, D.C., Chiang, H.H., Lee, T.T.: ‘Elucidating vehicle lateral dynamics using a bifurcation analysis’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (2), pp. 195207.
    41. 41)
      • 50. Gao, B., Zhang, R.H., Lou, X.M.: ‘Modeling day-to-day flow dynamics on degradable transport network’, PLoS ONE, 2016, 11, (12), p. e0168241.
    42. 42)
      • 54. Kang, C.M., Gu, Y.S., Jeon, S.J., et al: ‘Lateral control system for autonomous lane change system on highways’, Les Cahiers Nantais, 2016, 9, (2), pp. 111115.
    43. 43)
      • 46. Huynh, P., Do, T.H., Yoo, M.: ‘A probability-based algorithm using image sensors to track the LED in a vehicle visible light communication system’, Sensors, 2017, 17, (2), pp. 347357.
    44. 44)
      • 35. Tang, T.Q., Huang, H.J., Shang, H.Y.: ‘Influences of the driver's bounded rationality on micro driving behavior, fuel consumption and emissions’, Transp. Res. D, 2015, 41, pp. 423432.
    45. 45)
      • 8. Gialleonardo, E.D., Bruni, S., True, H.: ‘Analysis of the nonlinear dynamics of a 2-axle freight wagon in curves’, Veh. Syst. Dyn., 2014, 52, (1), pp. 125141.
    46. 46)
      • 43. Angelis, S., Tidlund, M., Leledakis, A., et al: ‘Optimal steering for double-lane change entry speed maximization’. Proc. of ACEV'14 Int. Symp. on Advanced Vehicle Control, Tokyo, Japan, September 2014, pp. 2226.
    47. 47)
      • 49. Dixit, V.V., Chand, S., Nair, D.J.: ‘Autonomous vehicles: disengagements, accidents and reaction times’, PLoS ONE, 2016, 11, (12), p. e0168054.
    48. 48)
      • 14. Rossa, F.D., Gobbi, M., Mastinu, G., et al: ‘Bifurcation analysis of a car and driver model’, Veh. Syst. Dyn., 2014, 52, pp. 142156.
    49. 49)
      • 9. Liu, Z.H., Payre, G., Bourassa, P.: ‘Nonlinear oscillations and chaotic motions in a road vehicle system with driver steering control’, Nonlinear Dyn., 1996, 9, pp. 281304.
    50. 50)
      • 39. Karacasu, M., Er, A.: ‘An analysis on distribution of traffic faults in accidents, based on driver's age and gender: Eskisehir case’, Proc., Soc. Behav. Sci., 2011, 20, pp. 776785.
    51. 51)
      • 13. Taffo, G.I.K., Siewe, M.S.: ‘Parametric resonance, stability and heteroclinic bifurcation in a nonlinear oscillator with time-delay: application to a quarter-car model’, Mech. Res. Commun., 2013, 52, pp. 110.
    52. 52)
      • 59. Toger, H., Steindl, A.: ‘Nonlinear dynamic introduction’ (Springer-Verlag Press, Berlin, 2012, 1st edn. 2012).
    53. 53)
      • 29. Tang, T.Q., Caccetta, L., Wu, Y.H., et al: ‘A macro model for traffic flow on road networks with varying road conditions’, J. Adv. Transp., 2014, 48, pp. 304317.
    54. 54)
      • 22. Wei, D.G., Zhu, W.W., Wang, B., et al: ‘Effects of brake pressures on stick-slip bifurcation and chaos of the vehicle brake system’, J. Vibroeng., 2015, 17, (5), pp. 27182732.
    55. 55)
      • 6. Rossa, F.D., Mastinu, G., Piccardi, C.: ‘Bifurcation analysis of an automobile model negotiating a curve’, Veh. Syst. Dyn., 2012, 50, (10), pp. 124.
    56. 56)
      • 30. Tang, T.Q., Li, J.G., Huang, H.J., et al: ‘A car-following model with real-time road conditions and numerical tests’, Measurement, 2014, 48, pp. 6376.
    57. 57)
      • 37. Casselgren, J., Bodin, U.: ‘Reusable road condition information system for traffic safety and targeted maintenance’, IET Intell. Transp. Syst., 2017, 11, (4), pp. 230238.
    58. 58)
      • 60. Zhang, Q.C., Wang, H.L., Zhu, Z.W., et al: ‘Bifurcation and chaos theory and application’ (Tianjin University Press, Tianjin, 2005, 1st edn. 2005) (in Chinese).
    59. 59)
      • 33. Tang, T.Q., Li, C.Y., Huang, H.J., et al: ‘A new fundamental diagram theory with the individual difference of the driver's perception ability’, Nonlinear Dyn., 2011, 67, (3), pp. 22552265.
    60. 60)
      • 25. Lu, J.W., Xu, Y., Wang, X.X.: ‘Analysis of shimmy characteristic based on temperature effects and steering linkage clearance for vehicle’, Trans. Chin. Soc. Agric. Mach., 2013, 29, (14), pp. 7481(in Chinese with English abstract).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0238
Loading

Related content

content/journals/10.1049/iet-its.2016.0238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading