access icon free Decoupled H control of automated vehicular platoons with complex interaction topologies

The platooning of automated vehicles has potential to significantly benefit road traffic, while its robust performance is less investigated especially considering increasing complexity of interaction topologies. This study presents a decoupled H control method for automated vehicular platoon to comprehensively compromise multiple performances. The platoon control system is first decomposed into an uncertain part and a diagonal nominal system through the linear transformation, which is motivated by the eigenvalue decomposition of information topology. Based on this almost decoupled system, a distributed H controller is presented, which can balance the performances of robustness and disturbance attenuation ability. Moreover, a numerical method is given to solve and optimise this controller by using linear matrix inequality approach. Several comparative hardware-in-loop tests of different communication topologies and controllers have been carried out to demonstrate the effectiveness of this method.

Inspec keywords: H∞ control; eigenvalues and eigenfunctions; road traffic; uncertain systems; road vehicles; linear matrix inequalities; topology

Other keywords: diagonal nominal system; decoupled H∞ control method; complex interaction topologies; distributed H∞ controller; information topology; linear matrix inequality approach; automated vehicular platoons; disturbance attenuation ability; decoupled H∞ control; eigenvalue decomposition; linear transformation; automated vehicular platoon; road traffic; interaction topologies; robust performance

Subjects: Algebra; Road-traffic system control; Optimal control; Combinatorial mathematics

References

    1. 1)
      • 6. Teo, R., Stipanovic, D.M., Tomlin, C.J.: ‘Decentralized spacing control of a string of multiple vehicles over lossy datalinks’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 469473.
    2. 2)
      • 8. Zhou, J., Peng, H.: ‘Range policy of adaptive cruise control vehicle for improved flow stability and string stability’, IEEE Trans. Intell. Transport. Syst., 2005, 6, (2), pp. 229237.
    3. 3)
      • 11. Yadlapalli, S.K., Darbha, S., Rajagopal, K.R.: ‘Information flow and its relation to stability of the motion of vehicles in a rigid formation’, IEEE Trans. Autom. Control, 2006, 51, (8), pp. 13151319.
    4. 4)
      • 40. Bapat, R.B.: ‘Linear algebra and linear models’ (Springer London Limited, 2012, 3rd edn.).
    5. 5)
      • 2. Luettel, T., Himmelsbach, M., Wuensche, J.: ‘Autonomous ground vehicles - concepts and a path to the future’. Proc. of the IEEE 100, 2012, Special Centennial Issue, pp. 18311839.
    6. 6)
      • 34. Huang, W., Zeng, J., Sun, H.: ‘Robust consensus for linear multi-agent systems with mixed uncertainties’, Syst. Control Lett., 2015, 76, pp. 5665.
    7. 7)
      • 1. Zhang, J., Wang, F.Y., Wang, K., et al: ‘Data-driven intelligent transportation systems: a survey’, IEEE Trans. Intell. Transport. Syst., 2011, 12, (4), pp. 16241639.
    8. 8)
      • 33. Han, D., Chesi, G., Hung, Y.: ‘Robust consensus for a class of uncertain multi-agent dynamical systems’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 306312.
    9. 9)
      • 18. Stankovic, S., Stanojevic, M., Siljak, D.: ‘Decentralized overlapping control of a platoon of vehicles’, IEEE Trans. Control Syst. Technol., 2000, 8, pp. 816831.
    10. 10)
      • 4. Shladover, S., Desoer, C., Hedrick, J., et al: ‘Automated vehicle control developments in the PATH program’, IEEE Trans. Veh. Technol., 1991, 40, pp. 114130.
    11. 11)
      • 9. Swaroop, D., Hedrick, J.K.: ‘Constant spacing strategies for platooning in automated highway systems’, ASME J. Dyn Syst. Meas. Control, 1999, 121, pp. 462470.
    12. 12)
      • 12. Zheng, Y., Li, S.B., Wang, J.Q., et al: ‘Influence of information flow topology on closed-loop stability of vehicle platoon with rigid formation’. Proc. of Int. Conf. on Intelligent Transportation System, Qingdao, China, 2014, pp. 20942100.
    13. 13)
      • 27. Gao, F., Dang, D.F., Huang, S.S., et al: ‘Decoupled robust control of vehicular platoon with identical controller and rigid information flow’, Int. J. Autom. Technol., 2017, 18, (1), pp. 157164.
    14. 14)
      • 14. Kianfar, R., Augusto, B., Ebadighajari, A., et al: ‘Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (3), pp. 9941007.
    15. 15)
      • 5. Xiao, L.Y., Cao, F.: ‘Practical string stability of platoon of adaptive cruise control vehicles’, IEEE Trans. Intell. Transport. Syst., 2011, 12, (4), pp. 11841194.
    16. 16)
      • 3. Caveney, D.: ‘Cooperative vehicular safety applications’, IEEE Control Syst. Mag., 2010, 30, (4), pp. 3853.
    17. 17)
      • 30. Li, S.E., Gao, F., Cao, D., et al: ‘Multiple-model switching control of vehicle longitudinal dynamics for platoon-level automation’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44804492.
    18. 18)
      • 38. Zheng, Y.: ‘Dynamic modeling and distributed control of vehicular platoon under the four-component frame-work’. Masters, Tsinghua University, 2015.
    19. 19)
      • 20. Zheng, Y., Li, S., Li, K., et al: ‘Distributed model predictive control for heterogeneous platoons under unidirectional topologies’, arXiv, 1603.03225, 2016.
    20. 20)
      • 19. Dunbar, W., Caveney, D.: ‘Distributed receding horizon control of vehicle platoons: Stability and string stability’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 620633.
    21. 21)
      • 15. Chan, E., Gilhead, P., Jelinek, P., et al: ‘Cooperative control of SARTRE automated platoon vehicles’. Proc. of 19th ITS World Congress, Vienna, Austria, 2012, pp. 19.
    22. 22)
      • 13. Shaw, E., Hedrick, J.: ‘String stability analysis for heterogeneous vehicle strings’. Proc. of American Control Conf., New York, USA, 2007, pp. 31183125.
    23. 23)
      • 26. Herman, I., Martinec, D., Hurak, Z., et al: ‘Nonzero bound on Fiedler eigenvalue causes exponential growth of H-infinity norm of vehicular platoon’, IEEE Trans. Autom. Control, 2014, 60, (8), pp. 16.
    24. 24)
      • 39. Ren, W., Beard, R.: ‘Consensus seeking in multi-agent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    25. 25)
      • 7. Swaroop, D., Hedrick, J.K., Chien, C.C., et al: ‘A comparison of spacing and headway control laws for automatically controlled vehicles’, Veh. Syst. Dyn., 1994, 23, (8), pp. 597625.
    26. 26)
      • 37. Wang, J., Duan, Z., Wen, G., et al: ‘Distributed robust control of uncertain linear multi-agent systems’, Int. J. Robust Nonlinear Control, 2014, 25, (13), pp. 21622179.
    27. 27)
      • 10. Fax, A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, pp. 14651476.
    28. 28)
      • 31. Gao, F., Li, S.E., Kum, D., et al: ‘Synthesis of multiple model switching controllers using H-inf theory for systems with large uncertainties’, Neurocomputing, 2015, 157, pp. 118124.
    29. 29)
      • 23. Willke, T.L., Tientrakool, P., Maxemchuk, N.F.: ‘A survey of inter-vehicle communication protocols and their applications’, IEEE Trans. Commun. Surv. Tutorials, 2009, 11, (2), pp. 320.
    30. 30)
      • 16. Tsugawa, S., Kato, S., Aoki, K.: ‘An automated truck platoon for energy saving’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Francisco, USA, 2011, pp. 41094114.
    31. 31)
      • 32. Hu, G.: ‘Robust consensus tracking of a class of second-order multi-agent dynamic systems’, Syst. Control Lett., 2012, 61, (1), pp. 134142.
    32. 32)
      • 17. Liang, C., Peng, H.: ‘Optimal adaptive cruise control with guaranteed string stability’, Veh. Syst. Dyn., 1999, 31, pp. 313330.
    33. 33)
      • 35. Hrishikesh, D.V.: ‘Hands-on matrix algebra using R-active and motivated learning with applications’, World Sci. Press., Singapore, 2011.
    34. 34)
      • 28. Gao, F., Li, K.: ‘Hierarchical switching control of longitudinal acceleration with large uncertainties’, Int. J. Autom. Technol., 2007, 8, (3), pp. 351359.
    35. 35)
      • 25. Guo, G., Yue, W.: ‘Autonomous platoon control allowing range-limited sensors’, IEEE Trans. Veh. Technol., 2012, 61, (7), pp. 29012912.
    36. 36)
      • 24. Ploeg, J., Serrarens, A.F., Heijenk, G.: ‘Connect & drive: design and evaluation of cooperative adaptive cruise control for congestion reduction’, J. Modern Transport., 2011, 19, (3), pp. 207213.
    37. 37)
      • 22. Zheng, Y., Li, S.E., Wang, J.Q., et al: ‘Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (1), pp. 1426.
    38. 38)
      • 21. Gao, F., Li, S.E., Zheng, Y., et al: ‘Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay’, IET Intell. Transp. Syst., 2016, 10, (7), pp. 503513.
    39. 39)
      • 36. Boyd, B., Ghaoui, L.E., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’, Soc. Ind. Appl. Math. Press., Philadelphia, 1994.
    40. 40)
      • 29. Gao, F., Li, X.P., Ming, G.Q.: ‘Adaptive speed control under vehicle and road uncertainties using multiple model approach’. Proc. of American Control Conf., Portland, USA, 2014, pp. 897902.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0223
Loading

Related content

content/journals/10.1049/iet-its.2016.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading