Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Colouring vehicle threat and minimising threat avoidance trajectory cost for adaptive vehicle collision defence system in active safe driving

The Advanced Driver Assistance Systems (ADASs) have been proposed to avoid vehicular accidents by using the inter-vehicle cooperation mechanism, the real-time-based sharing of the road and traffic information, automatic controls of braking and acceleration and so on. Several critical challenges in ADAS are seldom discussed in related studies, including unstable driving in velocity or the road lane, driving assistance without driving path prediction, suddenly happening of human abnormal driving or mechanical vehicle accident and so on. Thus, this study proposes the Adaptive vehicle Collision Defence (ACD) system to minimise the driving threat under critical driving threats. The proposed ACD consists of three phases: the adaptive time-to-collision (TTC) determination phase, the threat probability analysis with colouring phase, and the threat avoidance phase. The main objectives are to minimise the driving threat probability and to achieve active safe driving for the advanced driver assistance systems. Numerical results indicate that the proposed ACD outperforms the compared approaches in TTC probability, driving threat probability, and region boundary.

References

    1. 1)
      • 16. You, F., Zhang, R., Lie, G., et al: ‘Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system’, Expert Syst. Appl., 2015, 42, (14), pp. 59325946.
    2. 2)
      • 2. Aust, M.L., Fagerlind, H., Sagberg, F.: ‘Fatal intersection crashes in Norway: patterns in contributing factors and data collection challenges’, Accid. Anal. Prev., 2012, 45, pp. 782791.
    3. 3)
      • 12. Nehaoua, L., Nouveliere, L.: ‘Back stepping based approach for the combined longitudinal-lateral vehicle control’. Intelligent Vehicles Symp. (IV), 2012, pp. 395400.
    4. 4)
      • 22. Broggi, A., Buzzoni, M., Debattisti, S., et al: ‘Extensive tests of autonomous driving technologies’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 14031415.
    5. 5)
      • 18. Oh, C., Kim, T.: ‘Estimation of rear-end crash potential using vehicle trajectory data’, Accid. Anal. Prev., 2010, 42, (6), pp. 18881893.
    6. 6)
      • 8. Kusano, K.D., Gabler, H.C.: ‘Safety benefits of forward collision warning, brake assist, and autonomous braking systems in rear-end collisions’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (4), pp. 15461555.
    7. 7)
      • 6. Rondinone, M., Gozalvez, J.: ‘Emergency driving support algorithm with steering torque overlay and differential braking’. IEEE Conf. Intelligent Transportation Systems, 5–7 October 2011, pp. 14331439.
    8. 8)
      • 28. Jansson, J., Gustafsson, F.: ‘A framework and automotive application of collision avoidance decision making’, Automatica, 2008, 44, (9), pp. 23472351.
    9. 9)
      • 29. Duda, R., Hart, P., Stork, D.: ‘Pattern Classification’ (Wiley, New York, 2001, 2nd edn.).
    10. 10)
      • 32. Qu, D., Chen, X., Yang, W., et al: ‘Modeling of car-following required safe distance based on molecular dynamics’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2014).
    11. 11)
      • 13. Isermann, R., Mannale, R., Schmitt, K.: ‘Collision-avoidance systems PRORETA situation analysis and intervention control’, Control Eng. Pract., 2012, 20, (11), pp. 12361246.
    12. 12)
      • 1. Doecke, S.D., Anderson, R.W.G., Mackenzie, J.R.R., et al: ‘The potential of autonomous emergency braking systems to mitigate passenger vehicle crashes’ (Centre for Automotive Safety Research, 2012), pp. 111.
    13. 13)
      • 3. IEEE Standard for Information technology – Telecommunication and information exchange between systems – local and metropolitan region networks – specific requirements. IEEE Std. 802.11p, July 2010.
    14. 14)
      • 10. Ngoduy, D.: ‘Instability of cooperative adaptive cruise control traffic flow: a macroscopic approach’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (10), pp. 28382851.
    15. 15)
      • 25. Farooq, M., Pasha, M., Khan, K.: ‘A data dissemination model for cloud enabled VANETs using in-vehicular resources’. Int. Conf. Computing for Sustainable Global Development (INDIACom), 2014, pp. 458462.
    16. 16)
      • 21. Peter, S., Marian, B., Oliver, M.: ‘Determination of safety distance by simulation and collision avoidance on a road's danger zones’, Comput. Technol. Appl., 2012, 3, (2), pp. 148158.
    17. 17)
      • 14. Hassanzadeh, M., Lidberg, M., Keshavarz, M., et al: ‘Path and speed control of a heavy vehicle for collision avoidance manoeuvres’. Intelligent Vehicles Symp. (IV), 3–7 June 2012, pp. 129134.
    18. 18)
      • 37. Chen, L.-Y., Fu, S.-T., Zhang, J.-Y., et al: ‘Trajectory-based optimal area forwarding for infrastructure-to-vehicle data delivery with partial deployment of stationary nodes’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013).
    19. 19)
      • 23. Anderson, S.J., Karumanchi, S.B., Iagnemma, K.: ‘Constraint-based planning and control for safe, semi-autonomous operation of vehicles’. Intelligent Vehicles Symp. (IV), 3–7 June 2012, pp. 383388.
    20. 20)
      • 35. Li, S.-B., Fu, B.-B., Dang, W.-X.: ‘Dynamic analyses of urban expressway network with mesoscopic traffic flow model integrated variable speed limits’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2014).
    21. 21)
      • 30. Lv, W., Song, W.-g., Fang, Z.-m., et al: ‘Modelling of lane-changing behavior integrating with merging effect before a city road bottleneck’, Physica A: Stat. Mech. Appl., 2013, 392, (20), pp. 51435153.
    22. 22)
      • 24. He, W., Yan, G., Xu, L.: ‘Developing vehicular data cloud services in the IoT environment’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 15871595.
    23. 23)
      • 11. Guo, W., Huang, L., Chen, L., et al: ‘R-MAC: risk-aware dynamic MAC protocol for vehicular cooperative collision avoidance system’, Int. J. Distrib. Sensor Netw., 2013, 9, (5), pp. 114.
    24. 24)
      • 33. Yu, S., Liu, Q., Li, X.: ‘Full velocity difference and acceleration model for a car-following theory’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (5), pp. 12291234.
    25. 25)
      • 4. Rondinone, M., Gozalvez, J.: ‘Contention-based forwarding with multi-hop connectivity awareness in vehicular ad-hoc networks’, Comput. Netw., 2013, 57, (8), pp. 18211837.
    26. 26)
      • 5. Autonomous Navigation and Collision Avoidance Robot, http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-102.html.
    27. 27)
      • 31. The safe distance of driving, http://www.freeway.gov.tw/.
    28. 28)
      • 27. Falcone, P., Ali, M., Sjöberg, J.: ‘Predictive threat assessment via reachability analysis and set invariance theory’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 13521361.
    29. 29)
      • 39. Chang, B.-J., Liang, Y.-H., Huang, Y.-D.: ‘Adaptive message forwarding for avoiding broadcast storm and guaranteeing delay in active safe driving VANET’, Wirel. Netw., 2015, 21, (3), pp. 739756.
    30. 30)
      • 20. Lv, W., Song, W.-g., Fang, Z.-m., et al: ‘Modelling of lane- changing behaviour integrating with merging effect before a city road bottleneck’, Stat. Mech. Appl., 2013, 392, (20), pp. 51435153.
    31. 31)
      • 26. Brännström, M., Sandblom, F., Hammarstrand, L.: ‘A probabilistic framework for decision-making in collision avoidance systems’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 637648.
    32. 32)
      • 7. Benslimane, A., Taleb, T., Sivaraj, R.: ‘Dynamic clustering-based adaptive mobile gateway management in integrated VANET – 3G heterogeneous wireless networks’, Sel. Regions Commun., 2011, 29, pp. 559570.
    33. 33)
      • 17. Kala, R., Warwick, K.: ‘Motion planning of autonomous vehicles in a non-autonomous vehicle environment without speed lanes’, Intell. Transp. Syst. (ITSC), 2013, 26, (5-6), pp. 15881601.
    34. 34)
      • 38. Microsimulation of Road Traffic Flow, http://www.traffic-simulation.de/.
    35. 35)
      • 9. Hafner, M.R., Cunningham, D., Caminiti, L., et al: ‘Cooperative collision avoidance at intersections: algorithms and experiments’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 131134.
    36. 36)
      • 36. Yao, W., Zhao, H., Bonnifait, P., et al: ‘Lane change trajectory prediction by using recorded human driving data’. 2013 IEEE Intelligent Vehicles Symp. (IV), March 2013, pp. 430436.
    37. 37)
      • 15. Kala, R., Warwick, K.: ‘Double-lane change optimization for a stochastic vehicle model subject to collision probability constraints’. Intelligent Transportation Systems (ITSC), 5–7 October 2011, pp. 206211.
    38. 38)
      • 19. Karaduman, O., Eren, H., Kurum, H., et al: ‘Interactive risky behavior model for 3-car overtaking scenario using joint Bayesian network’. IEEE Intelligent Vehicles Symp. (IV), 2013, pp. 12791284.
    39. 39)
      • 34. Mensing, F., Trigui, R., Bideaux, E.: ‘Vehicle trajectory optimization for application in eco-driving’. Vehicle Power and Propulsion Conf. (VPPC), 2011, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0181
Loading

Related content

content/journals/10.1049/iet-its.2016.0181
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address