http://iet.metastore.ingenta.com
1887

Colouring vehicle threat and minimising threat avoidance trajectory cost for adaptive vehicle collision defence system in active safe driving

Colouring vehicle threat and minimising threat avoidance trajectory cost for adaptive vehicle collision defence system in active safe driving

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Advanced Driver Assistance Systems (ADASs) have been proposed to avoid vehicular accidents by using the inter-vehicle cooperation mechanism, the real-time-based sharing of the road and traffic information, automatic controls of braking and acceleration and so on. Several critical challenges in ADAS are seldom discussed in related studies, including unstable driving in velocity or the road lane, driving assistance without driving path prediction, suddenly happening of human abnormal driving or mechanical vehicle accident and so on. Thus, this study proposes the Adaptive vehicle Collision Defence (ACD) system to minimise the driving threat under critical driving threats. The proposed ACD consists of three phases: the adaptive time-to-collision (TTC) determination phase, the threat probability analysis with colouring phase, and the threat avoidance phase. The main objectives are to minimise the driving threat probability and to achieve active safe driving for the advanced driver assistance systems. Numerical results indicate that the proposed ACD outperforms the compared approaches in TTC probability, driving threat probability, and region boundary.

References

    1. 1)
      • S.D. Doecke , R.W.G. Anderson , J.R.R. Mackenzie . (2012)
        1. Doecke, S.D., Anderson, R.W.G., Mackenzie, J.R.R., et al: ‘The potential of autonomous emergency braking systems to mitigate passenger vehicle crashes’ (Centre for Automotive Safety Research, 2012), pp. 111.
        .
    2. 2)
      • M.L. Aust , H. Fagerlind , F. Sagberg .
        2. Aust, M.L., Fagerlind, H., Sagberg, F.: ‘Fatal intersection crashes in Norway: patterns in contributing factors and data collection challenges’, Accid. Anal. Prev., 2012, 45, pp. 782791.
        . Accid. Anal. Prev. , 782 - 791
    3. 3)
      • 3. IEEE Standard for Information technology – Telecommunication and information exchange between systems – local and metropolitan region networks – specific requirements. IEEE Std. 802.11p, July 2010.
        .
    4. 4)
      • M. Rondinone , J. Gozalvez .
        4. Rondinone, M., Gozalvez, J.: ‘Contention-based forwarding with multi-hop connectivity awareness in vehicular ad-hoc networks’, Comput. Netw., 2013, 57, (8), pp. 18211837.
        . Comput. Netw. , 8 , 1821 - 1837
    5. 5)
      • 5. Autonomous Navigation and Collision Avoidance Robot, http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-102.html.
        .
    6. 6)
      • M. Rondinone , J. Gozalvez .
        6. Rondinone, M., Gozalvez, J.: ‘Emergency driving support algorithm with steering torque overlay and differential braking’. IEEE Conf. Intelligent Transportation Systems, 5–7 October 2011, pp. 14331439.
        . IEEE Conf. Intelligent Transportation Systems , 1433 - 1439
    7. 7)
      • A. Benslimane , T. Taleb , R. Sivaraj .
        7. Benslimane, A., Taleb, T., Sivaraj, R.: ‘Dynamic clustering-based adaptive mobile gateway management in integrated VANET – 3G heterogeneous wireless networks’, Sel. Regions Commun., 2011, 29, pp. 559570.
        . Sel. Regions Commun. , 559 - 570
    8. 8)
      • K.D. Kusano , H.C. Gabler .
        8. Kusano, K.D., Gabler, H.C.: ‘Safety benefits of forward collision warning, brake assist, and autonomous braking systems in rear-end collisions’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (4), pp. 15461555.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 1546 - 1555
    9. 9)
      • M.R. Hafner , D. Cunningham , L. Caminiti .
        9. Hafner, M.R., Cunningham, D., Caminiti, L., et al: ‘Cooperative collision avoidance at intersections: algorithms and experiments’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 131134.
        . IEEE Trans. Intell. Transp. Syst. , 3 , 131 - 134
    10. 10)
      • D. Ngoduy .
        10. Ngoduy, D.: ‘Instability of cooperative adaptive cruise control traffic flow: a macroscopic approach’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (10), pp. 28382851.
        . Commun. Nonlinear Sci. Numer. Simul. , 10 , 2838 - 2851
    11. 11)
      • W. Guo , L. Huang , L. Chen .
        11. Guo, W., Huang, L., Chen, L., et al: ‘R-MAC: risk-aware dynamic MAC protocol for vehicular cooperative collision avoidance system’, Int. J. Distrib. Sensor Netw., 2013, 9, (5), pp. 114.
        . Int. J. Distrib. Sensor Netw. , 5 , 1 - 14
    12. 12)
      • L. Nehaoua , L. Nouveliere .
        12. Nehaoua, L., Nouveliere, L.: ‘Back stepping based approach for the combined longitudinal-lateral vehicle control’. Intelligent Vehicles Symp. (IV), 2012, pp. 395400.
        . Intelligent Vehicles Symp. (IV) , 395 - 400
    13. 13)
      • R. Isermann , R. Mannale , K. Schmitt .
        13. Isermann, R., Mannale, R., Schmitt, K.: ‘Collision-avoidance systems PRORETA situation analysis and intervention control’, Control Eng. Pract., 2012, 20, (11), pp. 12361246.
        . Control Eng. Pract. , 11 , 1236 - 1246
    14. 14)
      • M. Hassanzadeh , M. Lidberg , M. Keshavarz .
        14. Hassanzadeh, M., Lidberg, M., Keshavarz, M., et al: ‘Path and speed control of a heavy vehicle for collision avoidance manoeuvres’. Intelligent Vehicles Symp. (IV), 3–7 June 2012, pp. 129134.
        . Intelligent Vehicles Symp. (IV) , 129 - 134
    15. 15)
      • R. Kala , K. Warwick .
        15. Kala, R., Warwick, K.: ‘Double-lane change optimization for a stochastic vehicle model subject to collision probability constraints’. Intelligent Transportation Systems (ITSC), 5–7 October 2011, pp. 206211.
        . Intelligent Transportation Systems (ITSC) , 206 - 211
    16. 16)
      • F. You , R. Zhang , G. Lie .
        16. You, F., Zhang, R., Lie, G., et al: ‘Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system’, Expert Syst. Appl., 2015, 42, (14), pp. 59325946.
        . Expert Syst. Appl. , 14 , 5932 - 5946
    17. 17)
      • R. Kala , K. Warwick .
        17. Kala, R., Warwick, K.: ‘Motion planning of autonomous vehicles in a non-autonomous vehicle environment without speed lanes’, Intell. Transp. Syst. (ITSC), 2013, 26, (5-6), pp. 15881601.
        . Intell. Transp. Syst. (ITSC) , 1588 - 1601
    18. 18)
      • C. Oh , T. Kim .
        18. Oh, C., Kim, T.: ‘Estimation of rear-end crash potential using vehicle trajectory data’, Accid. Anal. Prev., 2010, 42, (6), pp. 18881893.
        . Accid. Anal. Prev. , 6 , 1888 - 1893
    19. 19)
      • O. Karaduman , H. Eren , H. Kurum .
        19. Karaduman, O., Eren, H., Kurum, H., et al: ‘Interactive risky behavior model for 3-car overtaking scenario using joint Bayesian network’. IEEE Intelligent Vehicles Symp. (IV), 2013, pp. 12791284.
        . IEEE Intelligent Vehicles Symp. (IV) , 1279 - 1284
    20. 20)
      • W. Lv , W.-g. Song , Z.-m. Fang .
        20. Lv, W., Song, W.-g., Fang, Z.-m., et al: ‘Modelling of lane- changing behaviour integrating with merging effect before a city road bottleneck’, Stat. Mech. Appl., 2013, 392, (20), pp. 51435153.
        . Stat. Mech. Appl. , 20 , 5143 - 5153
    21. 21)
      • S. Peter , B. Marian , M. Oliver .
        21. Peter, S., Marian, B., Oliver, M.: ‘Determination of safety distance by simulation and collision avoidance on a road's danger zones’, Comput. Technol. Appl., 2012, 3, (2), pp. 148158.
        . Comput. Technol. Appl. , 2 , 148 - 158
    22. 22)
      • A. Broggi , M. Buzzoni , S. Debattisti .
        22. Broggi, A., Buzzoni, M., Debattisti, S., et al: ‘Extensive tests of autonomous driving technologies’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 14031415.
        . IEEE Trans. Intell. Transp. Syst. , 3 , 1403 - 1415
    23. 23)
      • S.J. Anderson , S.B. Karumanchi , K. Iagnemma .
        23. Anderson, S.J., Karumanchi, S.B., Iagnemma, K.: ‘Constraint-based planning and control for safe, semi-autonomous operation of vehicles’. Intelligent Vehicles Symp. (IV), 3–7 June 2012, pp. 383388.
        . Intelligent Vehicles Symp. (IV) , 383 - 388
    24. 24)
      • W. He , G. Yan , L. Xu .
        24. He, W., Yan, G., Xu, L.: ‘Developing vehicular data cloud services in the IoT environment’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 15871595.
        . IEEE Trans. Ind. Inf. , 2 , 1587 - 1595
    25. 25)
      • M. Farooq , M. Pasha , K. Khan .
        25. Farooq, M., Pasha, M., Khan, K.: ‘A data dissemination model for cloud enabled VANETs using in-vehicular resources’. Int. Conf. Computing for Sustainable Global Development (INDIACom), 2014, pp. 458462.
        . Int. Conf. Computing for Sustainable Global Development (INDIACom) , 458 - 462
    26. 26)
      • M. Brännström , F. Sandblom , L. Hammarstrand .
        26. Brännström, M., Sandblom, F., Hammarstrand, L.: ‘A probabilistic framework for decision-making in collision avoidance systems’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (2), pp. 637648.
        . IEEE Trans. Intell. Transp. Syst. , 2 , 637 - 648
    27. 27)
      • P. Falcone , M. Ali , J. Sjöberg .
        27. Falcone, P., Ali, M., Sjöberg, J.: ‘Predictive threat assessment via reachability analysis and set invariance theory’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 13521361.
        . IEEE Trans. Intell. Transp. Syst. , 4 , 1352 - 1361
    28. 28)
      • J. Jansson , F. Gustafsson .
        28. Jansson, J., Gustafsson, F.: ‘A framework and automotive application of collision avoidance decision making’, Automatica, 2008, 44, (9), pp. 23472351.
        . Automatica , 9 , 2347 - 2351
    29. 29)
      • R. Duda , P. Hart , D. Stork . (2001)
        29. Duda, R., Hart, P., Stork, D.: ‘Pattern Classification’ (Wiley, New York, 2001, 2nd edn.).
        .
    30. 30)
      • W. Lv , W.-g. Song , Z.-m. Fang .
        30. Lv, W., Song, W.-g., Fang, Z.-m., et al: ‘Modelling of lane-changing behavior integrating with merging effect before a city road bottleneck’, Physica A: Stat. Mech. Appl., 2013, 392, (20), pp. 51435153.
        . Physica A: Stat. Mech. Appl. , 20 , 5143 - 5153
    31. 31)
      • 31. The safe distance of driving, http://www.freeway.gov.tw/.
        .
    32. 32)
      • D. Qu , X. Chen , W. Yang . (2014)
        32. Qu, D., Chen, X., Yang, W., et al: ‘Modeling of car-following required safe distance based on molecular dynamics’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2014).
        .
    33. 33)
      • S. Yu , Q. Liu , X. Li .
        33. Yu, S., Liu, Q., Li, X.: ‘Full velocity difference and acceleration model for a car-following theory’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (5), pp. 12291234.
        . Commun. Nonlinear Sci. Numer. Simul. , 5 , 1229 - 1234
    34. 34)
      • F. Mensing , R. Trigui , E. Bideaux .
        34. Mensing, F., Trigui, R., Bideaux, E.: ‘Vehicle trajectory optimization for application in eco-driving’. Vehicle Power and Propulsion Conf. (VPPC), 2011, pp. 16.
        . Vehicle Power and Propulsion Conf. (VPPC) , 1 - 6
    35. 35)
      • S.-B. Li , B.-B. Fu , W.-X. Dang . (2014)
        35. Li, S.-B., Fu, B.-B., Dang, W.-X.: ‘Dynamic analyses of urban expressway network with mesoscopic traffic flow model integrated variable speed limits’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2014).
        .
    36. 36)
      • W. Yao , H. Zhao , P. Bonnifait .
        36. Yao, W., Zhao, H., Bonnifait, P., et al: ‘Lane change trajectory prediction by using recorded human driving data’. 2013 IEEE Intelligent Vehicles Symp. (IV), March 2013, pp. 430436.
        . 2013 IEEE Intelligent Vehicles Symp. (IV) , 430 - 436
    37. 37)
      • L.-Y. Chen , S.-T. Fu , J.-Y. Zhang . (2013)
        37. Chen, L.-Y., Fu, S.-T., Zhang, J.-Y., et al: ‘Trajectory-based optimal area forwarding for infrastructure-to-vehicle data delivery with partial deployment of stationary nodes’ (Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013).
        .
    38. 38)
      • 38. Microsimulation of Road Traffic Flow, http://www.traffic-simulation.de/.
        .
    39. 39)
      • B.-J. Chang , Y.-H. Liang , Y.-D. Huang .
        39. Chang, B.-J., Liang, Y.-H., Huang, Y.-D.: ‘Adaptive message forwarding for avoiding broadcast storm and guaranteeing delay in active safe driving VANET’, Wirel. Netw., 2015, 21, (3), pp. 739756.
        . Wirel. Netw. , 3 , 739 - 756
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0181
Loading

Related content

content/journals/10.1049/iet-its.2016.0181
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address