http://iet.metastore.ingenta.com
1887

CANS: context-aware traffic estimation and navigation system

CANS: context-aware traffic estimation and navigation system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Acquiring real-time traffic information is a basic requirement for dynamic vehicular navigation systems. The majority of the current navigation systems are based on static traffic information. Building on mobile crowdsensing technology, the authors propose context-aware traffic estimation and navigation system (CANS), a context-aware system that can estimate traffic state without any requirement for expensive infrastructure. Using only available equipment, it can provide dynamic navigation service to drivers. The proposed system consists of three main components: local traffic estimation, global traffic aggregation, and navigation. In this system, vehicles estimate local traffic state using vehicular contextual information including speed and acceleration by relying on fuzzy logic, and transmit the information to the urban server. The server integrates the received local traffic information from different vehicles and estimates the global traffic state, providing the traffic-aware navigation system to drivers. CANS performance is evaluated for an urban scenario in a traffic flow in Birjand, Iran. The experiment is conducted for evaluating CANS in both traffic congestion estimation and navigation. The results show an accurate estimation of traffic states along urban roads. Compared with previous approaches, CANS overrides them for its reduced travel time.

References

    1. 1)
      • 1. Li, F., Wang, Y.: ‘Routing in vehicular ad hoc networks: A survey’, IEEE Veh. Technol. Mag., 2007, 2, (2), pp. 1222.
    2. 2)
      • 2. Hartenstein, H., Laberteaux, K.P.: ‘A tutorial survey on vehicular ad hoc networks’, IEEE Commun. Mag., 2008, 46, (6), pp. 164171.
    3. 3)
      • 3. Boukerche, A., Oliveira, H.A., Nakamura, E.F., et al: ‘Vehicular ad hoc networks: a new challenge for localization-based systems’, Comput. Commun., 2008, 31, (12), pp. 28382849.
    4. 4)
      • 4. Rybicki, J., Scheuermann, B., Kiess, W., et al: ‘Challenge: peers on wheels-a road to new traffic information systems’. Proc. of the 13th Annual ACM Int. Conf. on Mobile Computing and Networking (MobiCom), Montreal, Canada, 2007, pp. 215221.
    5. 5)
      • 5. Liu, J., Wan, J., Wang, Q., et al: ‘A survey on position-based routing for vehicular ad hoc networks’, Telecommun. Syst., 2016, 62, (1), pp. 1530.
    6. 6)
      • 6. Moustafa, H., Zhang, Y.: ‘Vehicular networks: techniques, standards, and applications’ (Auerbach Publications, 2009).
    7. 7)
      • 7. Olariu, S., Weigle, M.C.: ‘Vehicular networks: from theory to practice’ (CRC Press, 2009).
    8. 8)
      • 8. Jindal, V., Bedi, P.: ‘Vehicular Ad-Hoc networks: introduction, standards, routing protocols and challenges’, Int. J. Comput. Sci. Issues, 2016, 13, (2), pp. 4455.
    9. 9)
      • 9. Vahdat-Nejad, H., Ramazani, A., Mohammadi, T., et al: ‘A survey on context-aware vehicular network applications’, Veh. Commun., 2016, 3, pp. 4357.
    10. 10)
      • 10. Cho, Y., Rice, J.: ‘Estimating velocity fields on a freeway from low-resolution videos’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 463469.
    11. 11)
      • 11. Morris, B.T., Trivedi, M.M.: ‘Learning, modeling, and classification of vehicle track patterns from live video’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (3), pp. 425437.
    12. 12)
      • 12. Xia, Y., Shi, X., Song, G., et al: ‘Towards improving quality of video-based vehicle counting method for traffic flow estimation’, Signal Process., 2016, 120, pp. 672681.
    13. 13)
      • 13. Coifman, B.: ‘Improved velocity estimation using single loop detectors’, Transport. Res. A Policy Pract, 2001, 35, (10), pp. 863880.
    14. 14)
      • 14. Coifman, B., Dhoorjaty, S., Lee, Z.-H.: ‘Estimating median velocity instead of mean velocity at single loop detectors’, Transport. Res. C Emerging Technol., 2003, 11, (3), pp. 211222.
    15. 15)
      • 15. Sun, C.C., Arr, G.S., Ramachandran, R.P., et al: ‘Vehicle reidentification using multidetector fusion’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (3), pp. 155164.
    16. 16)
      • 16. Leow, W.L., Ni, D., Pishro-Nik, H.: ‘A sampling theorem approach to traffic sensor optimization’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (2), pp. 369374.
    17. 17)
      • 17. Hellinga, B.R., Fu, L.: ‘Reducing bias in probe-based arterial link travel time estimates’, Transport. Res. C Emerging Technol., 2002, 10, (4), pp. 257273.
    18. 18)
      • 18. Li, Y., McDonald, M.: ‘Link travel time estimation using single GPS equipped probe vehicle’. Proc. 5th Int. IEEE Conf. on Intelligent Transportation Systems, 2002, pp. 932937.
    19. 19)
      • 19. Zhu, Y., Li, Z., Zhu, H., et al: ‘A compressive sensing approach to urban traffic estimation with probe vehicles’, IEEE Trans. Mob. Comput., 2013, 12, (11), pp. 22892302.
    20. 20)
      • 20. Wan, J., Zhang, D., Zhao, S., et al: ‘Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions’, IEEE Commun. Mag., 2014, 52, (8), pp. 106113.
    21. 21)
      • 21. Bauza, R., Gozalvez, J., Sanchez-Soriano, J.: ‘Road traffic congestion detection through cooperative vehicle-to-vehicle communications’. Proc. 35th IEEE Conf. on Local Computer Networks (LCN), 2010, pp. 606612.
    22. 22)
      • 22. Jiang, X., Du, D.H.: ‘BUS-VANET: a bus vehicular network integrated with traffic infrastructure’, IEEE Intell. Transport. Syst. Mag., 2015, 7, (2), pp. 4757.
    23. 23)
      • 23. Huang, Y., Wang, J., Jiang, C., et al: ‘Vehicular network based reliable traffic density estimation’. Vehicular Technology Conf. (VTC Spring), IEEE, 2016.
    24. 24)
      • 24. Abowd, G.D., Dey, A.K., Brown, P.J., et al: ‘Towards a better understanding of context and context-awareness’, in Gellersen, H.-W. (Ed.): ‘Handheld and ubiquitous computing’ (Springer Berlin Heidelberg, 1999), pp. 304307.
    25. 25)
      • 25. Dey, A.K.: ‘Understanding and using context’, Personal Ubi. Comp., 2001, 5, (1), pp. 47.
    26. 26)
      • 26. Ramazani, A., Vahdat-Nejad, H.: ‘A new context-aware approach to traffic congestion estimation’. 4th Int. eConf. on Computer and Knowledge Engineering (ICCKE), IEEE, Mashhad, Iran, 2014, pp. 504508.
    27. 27)
      • 27. Ganti, R.K., Ye, F., Lei, H.: ‘Mobile crowdsensing: current state and future challenges’, IEEE Commun. Mag., 2011, 49, (11), pp. 3239.
    28. 28)
      • 28. Guo, B., Yu, Z., Zhou, X., et al: ‘From participatory sensing to mobile crowd sensing’. IEEE Int. Conf. on Pervasive Computing and Communications Workshops (PERCOM Workshops), Budapest, 2014, pp. 593598.
    29. 29)
      • 29. Leontiadis, I., Marfia, G., Mack, D., et al: ‘On the effectiveness of an opportunistic traffic management system for vehicular networks’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 15371548.
    30. 30)
      • 30. Zarei, N., Ghayour, M.A., Hashemi, S.: ‘Road traffic prediction using context-aware random forest based on volatility nature of traffic flows’, in Selamat, A., Thanh Nguyen, N., Haron, H. (Eds.): ‘Intelligent information and database systems’ (Springer Berlin Heidelberg, 2013), pp. 196205.
    31. 31)
      • 31. Raphiphan, P., Zaslavsky, A., Prathombutr, P., et al: ‘Context aware traffic congestion estimation to compensate intermittently available mobile sensors’. Tenth Int. Conf. on Mobile Data Management: Systems, Services and Middleware (MDM'09), IEEE, Taipei, 2009, pp. 405410.
    32. 32)
      • 32. Kim, N., Lee, H.S., Oh, K.J., et al: ‘Context-aware mobile service for routing the fastest subway path’, Expert Syst. Applic., 2009, 36, (2), pp. 33193326.
    33. 33)
      • 33. Wang, Y., Jiang, J., Mu, T.: ‘Context-aware and energy-driven route optimization for fully electric vehicles via crowdsourcing’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 13311345.
    34. 34)
      • 34. Lilly, J.H., ‘corpMamdani Fuzzy Systems’: ‘Fuzzy control and identification’ (John Wiley & Sons, 2010), pp. 2745.
    35. 35)
      • 35. Baturone, I., Barriga, A., Jimenez-Fernandez, C., et al: ‘Microelectronic design of fuzzy logic-based systems’ (CRC press, 2000).
    36. 36)
      • 36. Sabek, I., Youssef, M., Vasilakos, A.V.: ‘ACE: an accurate and efficient multi-entity device-free WLAN localization system’, IEEE Trans. Mob. Comput., 2015, 14, (2), pp. 261273.
    37. 37)
      • 37. Subbu, K., Zhang, C., Luo, J., et al: ‘Analysis and status quo of smartphone-based indoor localization systems’, IEEE Wirel. Commun., 2014, 21, (4), pp. 106112.
    38. 38)
      • 38. Liu, J., Wan, J., Wang, Q., et al: ‘A time-recordable cross-layer communication protocol for the positioning of vehicular cyber-physical systems’, Future Gener. Comput. Syst., 2016, 56, pp. 438448.
    39. 39)
      • 39. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, 1, (1), pp. 269271.
    40. 40)
      • 40. Krajzewicz, D., Erdmann, J., Behrisch, M., et al: ‘Recent development and applications of SUMO-simulation of urban mobility’, Int. J. Adv. Syst. Meas., 2012, 5, (3 and 4), pp. 128138.
    41. 41)
      • 41. OpenStreetMap homepage. http://www.openstreetmap.org/, accessed April2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0180
Loading

Related content

content/journals/10.1049/iet-its.2016.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address