http://iet.metastore.ingenta.com
1887

Switching LDS detection for GNSS-based train integrity monitoring system

Switching LDS detection for GNSS-based train integrity monitoring system

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Train integrity whilst in service establishes the foundation for railway safety. This study investigates train integrity detection which reliably deduces whether the train consists remain intact. A switching linear dynamic system (SLDS) based train integrity detection method is proposed for Global Navigation Satellite System (GNSS) based train integrity Monitoring System (TIMS) using the relative distance, velocity and acceleration of the locomotive and the last van. There, Expectation Maximisation (EM) algorithm estimates the parameters of SLDS model while the Gaussian Sum Filter infers train integrity state. After that, to cope with false detection and misdetection, a verification procedure and train parting time estimation are designed. The approach is evaluated with both field trials and simulated data. Results show that the false alarm rate and misdetection rate of SLDS-based integrity detection approach are 0 and 0.09% respectively, which proves better than the estimated train length based detection model and Hidden Markov Model (HMM).

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0060
Loading

Related content

content/journals/10.1049/iet-its.2016.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address