access icon free Empowering vehicle tracking in a cluttered environment with adaptive cellular automata suitable to intelligent transportation systems

Detecting and tracking moving vehicles in actual traffic scenes is an embryonic investigation field for smart transportation systems. This study presents the computational paradigm of fuzzy cellular automata (FCA) to manage the sensitive to environmental fluctuations limitation associated with the background subtraction methods for dynamic vehicle tracking. The suggested model extends FCA that is formed with rules supporting least sensitive fuzzy ‘exclusive or’ operation as next case logic to control levels of ambiguity in rule similarly functions. At each step, the refresh of background in frame difference proposals is established according to the number of active cells and fuzzy mapping function; so moving vehicles that their grey level is totally similar to the background grey level are easily identified. Furthermore, an occlusion handling routine based on visual measurement is engaged in discovering the classes of the vehicle occlusions and fragmenting the vehicle from each occlusive class. The empirical outcomes confirm that the suggested method is more accurate and powerful than conventional techniques for real-time vehicle tracking.

Inspec keywords: fuzzy set theory; object detection; intelligent transportation systems; object tracking; traffic engineering computing; cellular automata

Other keywords: environmental fluctuations limitation; smart transportation systems; moving vehicle detection; fuzzy cellular automata; visual measurement; moving vehicle tracking; cluttered environment; least sensitive fuzzy exclusive or operation; background subtraction methods; dynamic vehicle tracking; FCA; fuzzy mapping function; adaptive cellular automata; intelligent transportation systems; background grey level; occlusion handling routine

Subjects: Computer vision and image processing techniques; Traffic engineering computing; Optical, image and video signal processing; Combinatorial mathematics; Combinatorial mathematics; Automata theory

References

    1. 1)
      • 27. Hernandez, J., Nava, J.: ‘Least sensitive (most robust) fuzzy ‘exclusive or’ operations’. Annual Meeting of the North American Fuzzy Information Processing Society, 2011, pp. 16.
    2. 2)
      • 16. Chitra, M., Geetha, M.K., Menaka, L.: ‘Occlusion and abandoned object detection for surveillance applications’, Int. J. Comput. Appl. Technol. Res., 2013, 2, (6), pp. 708713.
    3. 3)
      • 9. Płaczek, B.: ‘A traffic model based on fuzzy cellular automata’, J. Cell. Autom., 2013, 8, (3), pp. 261282.
    4. 4)
      • 36. Sigari, M., Mozayani, N., Pourreza, H.: ‘Fuzzy running average and fuzzy background subtraction: concepts and application’, Int. J. Comput. Sci. Netw. Secur., 2008, 8, (2), pp. 138143.
    5. 5)
      • 41. Yung, C., Weng, C., Chen, Y.: ‘Vehicle detection in aerial surveillance using dynamic Bayesian networks’, IEEE Trans. Image Process., 2012, 21, (4), pp. 21522159.
    6. 6)
      • 33. Mu, K., Hui, F., Zhao, X.: ‘Multiple vehicle detection and tracking in highway traffic surveillance video based on SIFT feature matching’, Int. J. Inf. Process. Syst., 2016, 12, (2), pp. 183195.
    7. 7)
      • 30. Sharma, B., Katiyar, V., Singh, A.: ‘The automated vehicle detection of highway traffic images by differential morphological profile’, J. Transport. Technol., 2014, 4, (2), pp. 150156.
    8. 8)
      • 7. Chovanec, M.: ‘Computer vision vehicle tracking using background subtraction’, J. Inf. Control Manag. Syst., 2005, 1, (1), pp. 18.
    9. 9)
      • 3. Hadi, R., Sulong, G., George, L.: ‘Vehicle detection and tracking techniques: A concise review’, Signal Image Process. Int. J., 2014, 5, (1), pp. 112.
    10. 10)
      • 26. Mraz, M., Zimic, N., Lapanja, I., et al: ‘Fuzzy cellular automata: from theory to applications’. IEEE Int. Conf. on Tools with Artificial Intelligence, 2000, pp. 320323.
    11. 11)
      • 40. Wang, C., Lien, J.: ‘Automatic vehicle detection using local features—A statistical approach’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 8396.
    12. 12)
      • 2. Kuntawar, S., Chaudhari, V., Patil, D.: ‘Vehicle identification and classification: a survey’. Int. Conf. on Modeling and Simulation in Engineering & Technology, 2014, pp. 19.
    13. 13)
      • 39. Shi, X., Ling, H., Blasch, E., et al: ‘Context-driven moving vehicle detection in wide area motion imagery’. IEEE Int. Conf. on pattern Recognition, 2012, pp. 25122515.
    14. 14)
      • 14. Carvalho, J.P., Carola, M., Tomé, J.: ‘Using rule-based fuzzy cognitive maps to model dynamic cell behaviour in Voronoi based cellular automata’. IEEE Int. Conf. on Fuzzy Systems, 2006, pp. 16871694.
    15. 15)
      • 35. Zhu, Z., Lu, X.: ‘An accurate shadow removal method for vehicle tracking’. IEEE Int. Conf. in Artificial Intelligence and Computational Intelligence, 2010, pp. 5962.
    16. 16)
      • 31. Ruolin, Z., Ding, J.: ‘Object tracking and detecting based on adaptive background subtraction’, Proc. Eng., 2012, 29, (2012), pp. 13511355.
    17. 17)
      • 32. He, L., Chao, Y., Suzuki, K.: ‘A new two-scan algorithm for labeling connected components in binary images’, World Congress Eng., 2012, 2, pp. 16.
    18. 18)
      • 15. Pang, C., Lam, W., Yung, N.: ‘A novel method for resolving vehicle occlusion in a monocular traffic-image sequence’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (3), pp. 129141.
    19. 19)
      • 10. Shakeri, M., Deldari, H., Naseri, A.: ‘A novel fuzzy background subtraction method based on cellular automata for urban traffic applications’. Int. Conf. on Signal Processing, 2008, pp. 899902.
    20. 20)
      • 11. Nayak, D., Patra, P., Mahapatra, A.: ‘A survey on two dimensional cellular automata and its application in image processing’. Int. Conf. on Emergent Trends in Computing and Communication, 2014, pp. 110.
    21. 21)
      • 20. Sivaraman, S., Trivedi, M.: ‘Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 17731795.
    22. 22)
      • 25. Chen, Y., Wu, B., Fan, C.: ‘Real-time vision-based multiple vehicle detection and tracking for nighttime traffic surveillance’. IEEE Int. Conf. on Systems, Man, and Cybernetics, 2009, pp. 33523358.
    23. 23)
      • 1. Chiu CC., M.Y. Ku, CY. Wang, : ‘Automatic traffic surveillance system for vision-based vehicle recognition and tracking’, J. Inf. Sci. Eng., 2010, 26, (2), pp. 611629.
    24. 24)
      • 21. Yousaf, K., Iftikhar, A., Javed, A.: ‘Comparative analysis of automatic vehicle classification techniques: a survey’, Int. J. Image Graphics Signal Process., 2012, 4, (9), pp. 5259.
    25. 25)
      • 24. Ning, J., Yang, Y., Zhu, F.: ‘Background modeling and fuzzy clustering for motion detection from video’, J. Multimed., 2013, 8, (5), pp. 626631.
    26. 26)
      • 29. Liu, Y., Phinn, S.: ‘Modeling urban development with cellular automata incorporating fuzzy-set approaches’, J. Comput Environ Urban Syst., 2003, 27, (6), pp. 637658.
    27. 27)
      • 18. Ch. Chiu, K., Chen, H., Hong, S.: ‘Visual motorcycle detection and tracking algorithms’, WSEAS Trans. Electron., 2008, 5, (4), pp. 121131.
    28. 28)
      • 17. Lee, B., Liew, L., Wang, Y.: ‘Occlusion handling in videos object tracking: a survey’. Int. Symp. of the Digital Earth, 2013, pp. 16.
    29. 29)
      • 6. Saunier, N., Sayed, T.: ‘A feature-based tracking algorithm for vehicles in intersections’. The 3rd Canadian Conf. on Computer and Robot Vision, 2006, pp. 17.
    30. 30)
      • 19. Parekh, H., Thakore, D., Jaliya, U.: ‘A survey on object detection and tracking methods’, Int. J. Innovat. Res. Comput. Commun. Eng., 2014, 2, (2), pp. 29702978.
    31. 31)
      • 28. Bedregal, B., Reiser, R., Dimuro, G.: ‘Xor-implications and e-implications: classes of fuzzy implications based on fuzzy XOR’, J. Electron. Notes Theoretical Comput. Sci., 2009, 247, (1), pp. 518.
    32. 32)
      • 8. Ng, K., Delp, E.: ‘Background subtraction using a pixel-wise adaptive learning rate for object tracking initialization’. SPIE Proc., Visual Information Processing and Communication, 2011, pp. 19.
    33. 33)
      • 13. Maji, P., Chaudhuri, P.: ‘Fuzzy cellular automata for modeling pattern classifier’, Trans. Inf. Syst., 2005, 88, (4), pp. 691702.
    34. 34)
      • 22. Musa, Z., Watada, J., Yan, S., et al: ‘Dynamic tracking system through PSO and Parzen particle filter’, 2009 (LNCS, 5712), pp. 220227.
    35. 35)
      • 38. She, K., Bebis, G., Gu, H., et al: ‘Vehicle tracking using on-line fusion of color and shape features’. Int. Conf. on Intelligent Transportation Systems, 2004, pp. 731736.
    36. 36)
      • 34. Kanhere, N., Birchfield, S., Sarasua, W.: ‘Vehicle segmentation and tracking in the presence of occlusions’, J. Transport. Res. Board, 2006, 1944, (1), pp. 8997.
    37. 37)
      • 23. Ayanzadeh, R., Mousavi, A.S., Shahamatnia, E.: ‘Fuzzy cellular automata based random numbers generation’, Trends Appl. Sci. Res., 2012, 7, (1), pp. 96102.
    38. 38)
      • 4. Patil, S., Patil, M.: ‘Moving vehicle detection: A review’, Int. J. Comput. Appl., 2014, 87, (15), pp. 3537.
    39. 39)
      • 12. Uguz, S., Sahin, U., Sahin, F.: ‘Edge detection with fuzzy cellular automata transition function optimized by PSO’, Comput. Electr. Eng., 2015, 43, (1), pp. 180192.
    40. 40)
      • 37. Zehang, S., Bebis, G., Miller, R.: ‘On-road vehicle detection: A review’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 694711.
    41. 41)
      • 5. Long, Y., Xiao, X., Chen, S.: ‘Vehicle tracking method using background subtraction and mean shift algorithm’. Int. Conf. on E-Product, E-Service and E-Entertainment, 2010, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2015.0253
Loading

Related content

content/journals/10.1049/iet-its.2015.0253
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading