Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Process for evaluating the data transfer performance of wireless traffic sensors for real-time intelligent transportation systems applications

Different wireless communication technologies, such as wireless fidelity (Wi-Fi), 4G cellular technologies and worldwide interoperability for microwave access (WiMAX) have been used as alternatives or supplement to wired communication in intelligent transportation systems (ITS). Widespread deployment of wireless technologies in ITS require a comprehensive understanding of their performance, limitations and advantages in different field conditions. The authors evaluated performance of Wi-Fi wireless communication between adjacent roadside ITS devices (i.e., nodes) in different field conditions with varying characteristics of Wi-Fi technology. Field tests revealed that modulation rates, transmission power, line of sight, distance between nodes play critical roles in the performance of Wi-Fi communication in different roadway conditions. To achieve a desired level of performance requirements between adjacent nodes, minimum network performance thresholds must be realized in the field. Transportation agencies can identify the achievable performance, such as saturated throughput, delivery ratio and received signal strength at a particular location, by following the field test procedure developed in this research. The evaluation strategies and results presented in this study will contribute to the future planning and design of Wi-Fi communication for a roadway wireless sensor or device network considering corresponding communication performance requirements for specific ITS applications.

References

    1. 1)
      • 15. Mun, M., Estrin, D., Burke, J., et al: ‘Parsimonious mobility classification using GSM and WiFi traces’. Proc. of the Fifth Workshop on Embedded Networked Sensors (HotEmNets), 2008.
    2. 2)
      • 4. Paniati, J.: ‘Operational solutions to traffic congestion’ (Public Roads, Federal Highway Administration, 2004), vol. 68, no. 3.
    3. 3)
      • 38. Vassis, D., Kormentzas, G., Rouskas, A., et al: ‘The IEEE 802.11g standard for high data rate WLANs’, IEEE Netw., 2005, 19, (3), pp. 2126.
    4. 4)
      • 40. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005, 1st edn.).
    5. 5)
      • 10. Yang, Q.Y., Sisiopiku, V., Arnold, J.A., et al: ‘Assessment of rural intelligent transportation system wireless communications solutions’, Transp. Res. Rec., 2000, 1739, pp. 5158.
    6. 6)
      • 31. Zhou, Y., Chowdhury, M., Wang, K.C., et al: ‘Development of a multi-step analysis method for evaluating wireless traffic surveillance network performance under adverse conditions and relay network topology using a communication network simulator’, Simul., Trans. Soc. Model. Simul. Int., 2012, 88, (8), pp. 948956.
    7. 7)
      • 30. Dey, K., Rayamajhi, A., Chowdhury, M., et al: ‘Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in heterogeneous wireless network performance evaluation’, Transp. Res. C, Emerg. Technol., 2016, 68, pp. 168184.
    8. 8)
      • 12. Hwang, M., Kemp, J., Lerner, L.E., et al: ‘Advanced public transportation system: state of the art updated 2006’. Report FTA-NJ-26-7062-06.1, Federal Transit Administration, 2006.
    9. 9)
      • 23. FCC, Dedicated Short Range Communications (DSRC) Service, 2007. Available at http://wireless.fcc.gov/services/index.htm?job=service_home&id=dedicated_src, accessed 1 June 2016.
    10. 10)
      • 3. Crunch, T.: ‘Phoenix PD keeps the city safe with firetide wireless mesh’ (Firetide, Inc., 2006). Available at https://www.firetide.com/files/8714/0122/6079/City_of_Phoenix.pdf, accessed on 20 November 2015.
    11. 11)
      • 28. Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., et al: ‘A comprehensive survey on vehicular ad hoc network’, J. Netw. Comput. Appl., 2014, 37, pp. 380392.
    12. 12)
      • 36. DD-WRT. Available at http://www.dd-wrt.com/dd-wrtv3/index.php, accessed 20 November 2015.
    13. 13)
      • 18. Hadaller, D., Keshav, S., Brecht, T., et al: ‘Vehicular opportunistic communication under the microscope’. Proc. of the 5th Int. Conf. on Mobile Systems, Applications and Services, 2007, pp. 206219.
    14. 14)
      • 33. Network Simulator- 3 (ns-3), 2015. Available at https://www.nsnam.org/, accessed 26 September 2015.
    15. 15)
      • 39. Ott, J., Kutscher, D.: ‘Drive-thru internet: IEEE 802.11 b for automobile users’. INFOCOM 2004, Twenty-third Annual Joint Conf. of the IEEE Computer and Communications Societies, 2004.
    16. 16)
      • 20. Cheng, X., Yang, L., Shen, X.: ‘D2D for intelligent transportation systems: a feasibility study’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 17841793.
    17. 17)
      • 8. Cai, H., Lin, Y.: ‘Design of a roadside seamless wireless communication system for intelligent highway’. Proc. of IEEE Networking, Sensing and Control, Tucson, AZ, 2005, pp. 342347.
    18. 18)
      • 27. Guerrero Ibanez, J., Zeadally, S., Contreras-Castillo, J.: ‘Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies’, IEEE Wirel. Commun., 2015, 22, (6), pp. 122128.
    19. 19)
      • 7. Chen, W., Chen, L., Chen, Z., et al: ‘Wits: a wireless sensor network for intelligent transportation system’. First Int. Multi-Symp. on Computer and Computational Sciences, 2006, IMSCCS'06, 2006, vol. 2, pp. 635641.
    20. 20)
      • 29. Ahmed, S.H., Bouk, S.H., Kim, D.: ‘Target RSU selection with low scanning latency in WiMAX-enabled vehicular networks’, Mobile Netw. Appl., 2015, 20, (2), pp. 239250.
    21. 21)
      • 6. Dey, K., Mishra, A., Chowdhury, M.: ‘Potential of intelligent transportation systems in mitigating adverse weather impacts on road mobility: a review’, IEEE Trans. ITS, 2015, 16, (3), pp. 11071119.
    22. 22)
      • 25. USDOT, Connected Vehicle Testbeds, 2016. Available at http://its.dot.gov/research_archives/testbed/testbed_affiliated.htm, accessed 25 August 2016.
    23. 23)
      • 22. Ma, Y., Chowdhury, M., Sadek, A., et al: ‘Integration of vehicle infrastructure integration (VII) system and artificial intelligence (AI) for online travel time prediction’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (3), pp. 13691382.
    24. 24)
      • 9. Smith, B.L., Zhang, H., Fontaine, M.D., et al: ‘Wireless location technology-based traffic monitoring: critical assessment and evaluation of an early generation system’, J. Transp. Eng., 2004, 130, (5), pp. 577584.
    25. 25)
      • 17. Zhou, Y., Chowdhury, M., Wang, K.C., et al: ‘Wireless traffic sensor network performance due to environmental disturbances and relay network topology’. Proc. of 88th Transportation Research Board Annual Meeting, Washington, D.C., 2009.
    26. 26)
      • 16. Quayle, S.M., Koonce, P., DePencier, D., et al: ‘Arterial performance measures with media access control readers portland, oregon, pilot study’. Transp. Res. Rec., 2010, 2192, pp. 185193.
    27. 27)
      • 35. Peterson, L.L., Davie, B.S.: ‘Computer networks: a system approach’ (Morgan Kaufmann, California, 2003, 3rd edn.).
    28. 28)
      • 11. Stephanedes, Y.J., Douligeris, C., Takaba, S.: ‘Communications for the intelligent transportation system’, IEEE Commun. Mag., 1996, 34, (10), pp. 2430.
    29. 29)
      • 2. Cheung, S.Y., Varaiya, P.: ‘Traffic surveillance by wireless sensor networks’. Final Report, California PATH Research, 2007. Available at http://www.its.berkeley.edu/sites/default/files/publications/UCB/2007/PRR/UCB-ITS-PRR-2007-4.pdf, accessed 20 November 2015.
    30. 30)
      • 14. Brydia, R.E., Raback, L.G., Rajbhardari, R., et al: ‘Communication trends and their impacts on TXDOT ITS deployments’. FHWA/TX-08/0-5586-1, Texas Department of Transportation, 2008.
    31. 31)
      • 13. Ammana, A.: ‘Assessment of current and emerging broadband wireless technologies for VDOT operations program’ (Center for Technology Development, Virginia Tech Transportation Institute, 2008).
    32. 32)
      • 1. Elliott, S.D., Dailey, D.J.: ‘Wireless communications for intelligent transportation systems’ (Artech House Publishers, 1995).
    33. 33)
      • 26. NHTSA: ‘U.S. Department of Transportation issues advance notice of proposed rulemaking to begin implementation of vehicle-to-vehicle communications technology’ (National Highway Traffic Safety Administration, 2014). Available at http://www.nhtsa.gov/About+NHTSA/Press+Releases/ NHTSA-issues-advanced-notice-of-proposed-rulemaking-on-V2V-communications, accessed 20 November 2015.
    34. 34)
      • 24. Cheng, L., Henty, B.E., Stancil, D.D., et al: ‘Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band’, IEEE J. Sel. Areas Commun., 2007, 25, (8), pp. 15011516.
    35. 35)
      • 32. Zhou, Y., Chowdhury, M., Wang, K.C., et al: ‘On-line traffic surveillance: impacts of wireless communications on video quality’, ASCE J. Transp. Eng., 2011, 138, (5), pp. 512519.
    36. 36)
      • 37. Iperf, University of Central Florida. Available at https://www.cst.ucf.edu/resources/iperf/, accessed 20 November 2015.
    37. 37)
      • 5. Zhou, Y., Hamilton, G., Chowdhury, M., et al: ‘Wireless communication alternatives for intelligent transportation systems: a case study’, J. Intell. Transp. Syst., 2011, 15, (3), pp. 147160.
    38. 38)
      • 41. Macfarlane, K., Cotton, B., Fine, A.: ‘Making a business case for geographic information systems (GIS) technologies’. DOT-VNTSC-FHWA-15-17, U.S. Department of Transportation, John A Volpe National Transportation Systems Center, July 2015.
    39. 39)
      • 21. Khan, S.M., Atamturktur, S., Chowdhury, M., et al: ‘Integration of structural health monitoring and intelligent transportation systems for bridge condition assessment: current status and future direction’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (8), pp. 21072122.
    40. 40)
      • 19. Chou, C.M., Li, C.Y., Chien, W.M., et al: ‘A feasibility study on vehicle-to-infrastructure communication: WiFi vs. WiMAX’. 2009 Tenth Int. Conf. on Mobile Data Management: Systems, Services and Middleware, 2009, pp. 397398.
    41. 41)
      • 34. Pourahmadit, V., Jamalit, H., Naieeni, R.S.: ‘Saturated throughput analysis of the IEEE 802.11b DCF mode in a slow Rayleigh fading channel’. Proc. of 13th IEEE Int. Conf. on Networks, Kuala Lumpur, Malaysia, 2005, vol. 1, pp. 4650.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2015.0250
Loading

Related content

content/journals/10.1049/iet-its.2015.0250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address