Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Serial subtractive deconvolution algorithms for time-domain ultra wide band in-vehicle channel sounding

Ultra-wide band (UWB) communication is expected to play a key role in next generation broadband intra vehicle wireless applications. The car compartment differs significantly from other well studied indoor or outdoor environments. Hence, channel sounding experiments are crucial for gaining a thorough knowledge of the UWB signal propagation characteristics in such a medium. Time domain channel sounding campaigns often employ some sort of deconvolution during measurement post processing as the measured signal in these experiments is the convolution of the channel response and the probing pulse which violates the Nyquist criterion. In this study, a comparison of two variants of time-domain serial subtractive deconvolution algorithm, popularly known as CLEAN, is presented. Appropriate statistical metrics for assessing the relative merit of a deconvolution technique are identified in the context of intra vehicle UWB transmission, and the better algorithm is selected based on its performance over a standard IEEE channel simulation testbed. The chosen method is then applied to extract power delay profile and delay parameters from an empirical time domain sounding experiment performed inside a passenger car. The effects of passenger occupancy, transmitter receiver separation and absence of direct transmission path are studied.

References

    1. 1)
      • 26. Clark, B.G.: ‘An efficient implementation of the algorithm ‘CLEAN’’, Astron. Astrophys., 1980, 89, (3), pp. 377378.
    2. 2)
    3. 3)
      • 28. Muqaibel, A., Safaai-Jazi, A., Woerner, B., Riad, S.: ‘UWB channel impulse response characterization using deconvolution techniques’. Proc. IEEE MWSCAS, Tulsa, OK, USA, 2002, vol. 3, pp. 605608.
    4. 4)
      • 33. Santos, T., Karedal, J., Almers, P., Tufvesson, F., Molisch, A.F.: ‘Scatterer detection by successive cancellation for UWB – method and experimental verification’. Proc. IEEE VTC, Singapore, 2008, pp. 445449.
    5. 5)
      • 21. Di Benedetto, M.G., Giancola, G.: ‘Understanding ultra wide band radio fundamentals’ (Prentice Hall, New Jersey, NY, USA, 2004).
    6. 6)
    7. 7)
    8. 8)
      • 39. Blumenstein, J., Prokeš, A., Mikulášek, T., Maršálek, R., Zemen, T., Mecklenbräuker, C.: ‘Measurements of ultra wide band in-vehicle channel – statistical description and TOA positioning feasibility study’, EURASIP J Wirel. Commun. Net., 2015, 2015, (104), pp. 115.
    9. 9)
    10. 10)
      • 18. Sawada, H., Tomatsu, T., Ozaki, G., et al: ‘A sixty GHz intra-car multi-media communications system’. Proc. IEEE VTC, Barcelona, Spain, 2009, pp. 15.
    11. 11)
    12. 12)
    13. 13)
      • 24. Molisch, A.F.: ‘Wireless communications’ (John Wiley & Sons, West Sussex, England, 2011, 2nd edn.).
    14. 14)
      • 31. Katayama, Y., Tearsaka, K., Higashikatsuragi, K., Matsunami, I., Kajiwara, A.: ‘Experimental evaluation of in-vehicle UWB radio propagation characteristics’, IEICE Trans. Fundam., 2006, J89-B, (9), pp. 18151819.
    15. 15)
      • 10. Takahashi, K., Udagawa, T., Zhang, H., Arita, T., Nakagawa, M.: ‘Intra-vehicle wireless 1394 system’, IEICE Trans. Commun., 2002, E85-B, (5), pp. 938945.
    16. 16)
      • 5. Ahmed, M., Saraydar, C.U., ElBatt, T., Jijun, Y., Talty, T., Ames, M.: ‘Intra-vehicular wireless networks’. Proc. IEEE GLOBECOM, Washington DC, USA, 2007, pp. 19.
    17. 17)
      • 36. Department of Radio Electronics, Faculty of Electrical Engineering and Communication, Brno University of Technology. Research into wireless channels for intra-vehicle communication and positioning, GACR-13-38735S: Project documentation page. URL: http://www.radio.feec.vutbr.cz/GACR-13-38735S/.
    18. 18)
      • 20. Kato, A., Sato, K., Fujise, M., Kawakami, S.: ‘Propagation characteristics of 60-GHz millimeter waves for ITS inter-vehicle communications’, IEICE Trans. Commun., 2001, E84-B, (9), pp. 25302539.
    19. 19)
      • 2. Held, G.: ‘Inter- and intra-vehicle communications’ (Auerbach, Boca Raton, NY, USA, 2008).
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 17. Nakamura, R., Kajiwara, A.: ‘Empirical study on 60 GHz in-vehicle radio channel’. In: Proc. IEEE RWS, Santa Clara, CA, USA, 2012, pp. 327330.
    24. 24)
    25. 25)
      • 42. Yang, L.: ‘The applicability of the tap-delay line channel model to ultra wideband’. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2004.
    26. 26)
    27. 27)
      • 3. Nobuhiro, F., Masayoshi, M., Atsuo, I., Masami, G.: ‘Intra-and inter-vehicle communication network using low-cost POF links’, IEICE Trans. Inf. Syst. Tech., 2002, E85-D, (11), pp. 18391850.
    28. 28)
    29. 29)
      • 16. Niu, W., Li, J., Talty, T.: ‘Ultra-wideband channel modeling for intravehicle environment’, EURASIP J Wirel. Commun. Net., 2009, 2009, (806209), pp. 112.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 50. Blumenstein, J., Mikulasek, T., Marsalek, R., et al: ‘In-vehicle UWB channel measurement, model and spatial stationarity’. In: IEEE VNC, Paderborn, Germany, 2014, pp. 7780.
    34. 34)
      • 37. Federal Communications Commission. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems: First report and order; 2002. FCC 02-48. URL: www.fcc.gov/Bureaus/Engineering Technology/Orders/2002/fcc02048.pdf.
    35. 35)
      • 9. Hamada, S., Tomiki, A., Toda, T., Kobayashi, T.: ‘Wireless connections within spacecrafts to replace wired interface buses’. Proc. IEEE AERO, Big Sky, Montana, USA, 2013, pp. 19.
    36. 36)
    37. 37)
    38. 38)
      • 27. Yang, W., Zhang, N.: ‘A new multi-template CLEAN algorithm for UWB channel impulse response characterization’. Proc. IEEE ICCT, Guilin, China, 2006, pp. 14.
    39. 39)
      • 30. Kobayashi, T.: ‘Measurements and characterization of ultra wideband propagation channels in a passenger-car compartment’. Proc. IEEE ISSSTA, Manaus, Amazon, Brazil, 2006, pp. 228232.
    40. 40)
    41. 41)
      • 19. Blumenstein, J., Mikulasek, T., Marsalek, R., Prokes, A., Zemen, T., et al: ‘In-vehicle mm-wave channel model and measurement’. Proc. IEEE VTC, Vancouver, Canada, 2014, pp. 16.
    42. 42)
      • 1. Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., Kilmartin, L.: ‘Intra-vehicle networks: a review’, IEEE Trans. Intell. Trans. Syst., 2014, pp. 112, doi: 101109/TITS20142320605.
    43. 43)
      • 6. Hatamoto, H., Ano, S., Kikuchi, N., Shimizu, S.: ‘An evaluation of transmission performance for wireless harness systems using propagation models in an automobile engine compartment’. Proc. IEEE PIMRC, London, UK, 2013, pp. 117121.
    44. 44)
    45. 45)
    46. 46)
      • 47. Simard, R., L'Ecuyer, P.: ‘Computing the two-sided Kolmogorov-Smirnov distribution’, J. Stat. Softw., 2011, 39, (11), pp. 118.
    47. 47)
      • 49. Kukolev, P., Chandra, A., Mikulasek, T., Prokes, A., Zemen, T., Mecklenbrauker, C.: ‘In-vehicle channel sounding in the 5.8 GHz band’, EURASIP J. Wirel. Commun. Net, 2015, 2015, (57), pp. 19.
    48. 48)
      • 32. Chandra, A., Blumenstein, J., Mikulasek, T., et al: ‘CLEAN algorithms for intra-vehicular time-domain UWB channel sounding’. Proc. PECCS, Angers, France, 2015, pp. 224229.
    49. 49)
    50. 50)
      • 46. Kulhandjian, H., Melodia, T.: ‘Modeling underwater acoustic channels in short-range shallow water environments’. In: ACM WUWNet, Rome, Italy, 2014, pp. 15.
    51. 51)
      • 38. Ghavami, M., Michael, L.B., Kohno, R.: ‘Ultra wideband signals and systems in communication engineering’ (John Wiley & Sons, West Sussex, England, 2007, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2014.0287
Loading

Related content

content/journals/10.1049/iet-its.2014.0287
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address