Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Can ride-sharing become attractive? A case study of taxi-sharing employing a simulation modelling approach

Improved urban mobility can be attained through more efficient vehicle usage and better road network utilisation, namely through increased vehicle occupancy and new operation modes. In this study, the authors focus on a dynamic and distributed taxi-sharing system that takes advantage of nowadays widespread availability of communication and distributed computation to provide a cost-efficient, door-to-door and flexible service, offering a quality of service similar to conventional taxis. This system has been evaluated following a simulation modelling approach, including a realistic and accurate replication of the taxi operation in the city of Porto using empirical data (real origin/destination data and average occupancy rates). Simulation results show improved performance in terms of reduced fares (up to 8%), reduced total travel distance (up to 9%) and smaller operation costs. Furthermore, they proposed that several trade-offs (e.g. service performance against passengers’ transit times) should be considered during the system deployment and operation. In this study, it was also shown that increased system penetration rate and demand level can even further improve the system performance.

References

    1. 1)
      • 1. E. Commission: ‘Action Plan on Urban Mobility’ (Belgium, 2009).
    2. 2)
      • 10. Demand Responsive Transit service (DRTs): PersonalBus–Tuscany, European Commission Directorate-General for Energy and Transport, Tech. Rep. R853, Florence, Italy, 2009.
    3. 3)
      • 15. Wu, Y., Guan, L., Winter, S.: ‘Peer-to-Peer shared ride systems’. GeoSensor Networks, ser. Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2008, vol. 4540, pp. 252270.
    4. 4)
      • 23. Lalos, P., Korres, A., Datsikas, C., Tombras, G., Peppas, K.: ‘A framework for dynamic car and taxi pools with the use of positioning systems’. Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, Athens, Greece, November 2009, pp. 385391.
    5. 5)
      • 20. Frattasi, S., Fathi, H., Gimmler, A., Fitzek, F., Prasad, R.: ‘A new taxi ride service for the forthcoming generation of intelligent transportation systems’. Proc. of the Int. Conf. on ITS Telecommunications, Brest, France, June 2005.
    6. 6)
      • 31. Fare/Share NYC. Available at: http://www.faresharenyc.com.
    7. 7)
      • 4. Ferreira, M., Fernandes, R., Conceiçõo, H., Viriyasitavat, W., Tonguz, O.K.: ‘Self-Organized Traffic Control’. Proc. ACM Int. Workshop on VehiculAr InterNETworking, Chicago, USA, 2010, pp. 8590.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 28. BuzzCar. Available at: http://www.buzzcar.com.
    12. 12)
      • 32. Conceiçõ, H., Damas, L., Ferreira, M., Barros, J.: ‘Large-scale simulation of V2 V environments’. Proc. ACM Symp. on Applied Computing, Fortaleza, Brazil, 2008, pp. 2833.
    13. 13)
      • 9. Passos, L., Rossetti, R., Reis, L.: ‘Evaluation of taxi services on airport terminal's curbside for picking up passengers’. Proc. of the Sixth Iberian Conf. on Information Systems and Technologies, Chaves, Portugal, June 2011, pp. 16.
    14. 14)
      • 30. Transport for London. Available at: http://www.tfl.gov.uk/gettingaround/taxisandminicabs/taxis/1144.aspx.
    15. 15)
      • 19. Tao, C.-C.: ‘Dynamic taxi-sharing service using intelligent transportation system technologies’. Int. Conf. on Wireless Communications, Networking and Mobile Computing, New York, USA, September 2007, pp. 32093212.
    16. 16)
    17. 17)
    18. 18)
      • 27. ZipCar. Available at: http://www.zipcar.com.
    19. 19)
      • 22. Gidofalvi, G., Pedersen, T.B., Risch, T., Zeitler, E.: ‘Highly scalable trip grouping for large-scale collective transportation systems’. Proc. of the 11th Int. Conf. on Extending Database Technology, Nantes, France, pp. 678689.
    20. 20)
    21. 21)
      • 21. Chen, P.-Y., Liu, J.-W., Chen, W.-T.: ‘A fuel-saving and pollution-reducing dynamic taxi-sharing protocol in VANETs’. Proc. IEEE Vehicular Technology Conf., September 2010, pp. 15.
    22. 22)
    23. 23)
      • 18. Shao, J., Greenhalgh, C.: ‘DC2S: a dynamic car sharing system’. Proc. of the Second ACM SIGSPATIAL Int. Workshop on Location Based Social Networks, San Jose, California, 2010, pp. 5159.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 24. Tao, C., Wu, C.: ‘Behavioral responses to dynamic ridesharing services – the case of taxi-sharing project in Taipei’. IEEE Int. Conf. on Service Operations and Logistics, and Informatics, Beijing, China, October 2008, vol. 2, pp. 15761581.
    28. 28)
      • 8. Moreira-Matias, L., Gama, J., Ferreira, M., Damas, L.: ‘A predictive model for the passenger demand on a taxi network’. Proc. of the 15th IEEE Conf. on Intelligent Transportation Systems, Anchorage, USA, September 2012, pp. 10141019.
    29. 29)
      • 25. d'Orey, P.M., Fernandes, R., Ferreira, M.: ‘Empirical evaluation of a dynamic and distributed taxi-sharing system’. Proc. of IEEE Intelligent Transportation Systems Conf., Anchorage, AK, USA, September 2012.
    30. 30)
      • 2. European Environment Agency: ‘Laying the Foundations for Greener Transport (TERM 2011)’ (Tech. Rep. 7, Copenhagen, Denmark, 2011).
    31. 31)
      • 17. Piorkowski, M.: ‘Collaborative transportation systems’. IEEE Wireless Communication and Networking Conf., Sydney, Australia, April 2010.
    32. 32)
      • 26. d'Orey, P.M., Fernandes, R., Ferreira, M.: ‘Reducing the environmental impact of taxi operation: the taxi-sharing use case’. Proc. of 12th Int. Conf. on ITS Telecommunications, Taipei, Taiwan, November 2012.
    33. 33)
      • 34. Ferreira, M., Conceiçõo, H., Fernandes, R., Tonguz, O.: ‘Stereoscopic aerial photography: an alternative to model-based urban mobility approaches’. Proc. ACM Int. Workshop on VehiculAr InterNETworking, Beijing, China, 2009, pp. 5362.
    34. 34)
      • 29. Carpooling. Available at: http://www.carpooling.com.
    35. 35)
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0156
Loading

Related content

content/journals/10.1049/iet-its.2013.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address