access icon free Multi-model direct generalised predictive control for automatic train operation system

The authors propose a novel multi-model direct generalised predictive control based on predictive function control (PFC) algorithm for automatic train operation system. The proposed method facilitates autonomous driving of a train through a given guidance trajectory. Firstly, they present a multi-model architecture based on fuzzy c-means clustering algorithm. In order to obtain the optimal number of sub-linear models, they apply Xie–Beni cluster validity index. In this regards, the multi-model set is established off-line. Secondly, the proper sub-linear model is selected as the predictive model by using switching performance index at each time slot. The control variables are calculated by direct generalised predictive controller based on PFC. The control algorithm is simple, and can reduce the on-line computation time by directly identifies the unknown parameters in the controller. It can avoid recursively solving the Diophantine equations. The calculation of compensation value becomes simple by introducing PFC. Finally, simulation results are provided to show the effectiveness of the proposed scheme.

Inspec keywords: predictive control; railways; pattern clustering; trajectory control; performance index; time-varying systems; rail traffic control; fuzzy set theory

Other keywords: online computation time; PFC algorithm; switching performance index; Xie-Beni cluster validity index; autonomous train driving; trajectory guidance; automatic train operation system; Diophantine equations; multimodel architecture; compensation value; sublinear model; sublinear models; fuzzy c-means clustering algorithm; multimodel direct generalised predictive control; predictive function control algorithm

Subjects: Rail-traffic system control; Optimal control; Spatial variables control; Time-varying control systems; Combinatorial mathematics

References

    1. 1)
    2. 2)
      • 17. Xue, Z.K., Li, S.Y.: ‘A multimodel modeling approach to MIMO nonlinear systems’, Acta Electron. Sin., 2005, 33, (1), pp. 5257.
    3. 3)
      • 5. Yasunobu, S., Miyamoto, S., Ihara, H.: ‘A fuzzy control for train automatic stop control’, Trans. Soc. Instrum. Control Eng., 2002, E-2, (1), pp. 19.
    4. 4)
      • 8. Wang, Y., Hou, Z.S.: ‘Terminal iterative learning control for station stop control of a train’. Proc. Symp. Learning Control at IEEE CDC, 2009, vol. 6, pp. 31193124.
    5. 5)
    6. 6)
      • 22. Novak, P.C.J., Bobal, V.: ‘Multiple model modeling and predictive control of the pH neutralization process’, Int. J. Math. Models Methods Appl. Sci., 2011, 5, pp. 11701179.
    7. 7)
      • 10. Hongfeng, Q., Wei, X.: ‘Design of maglev automatic train operation system and research on predictive control algorithm’. 2011 IEEE Int. Conf. on Computer Science and Automation Engineering (CSAE), 2011, vol. 3, pp. 463470.
    8. 8)
      • 7. Wang, Y., Hou, Z.-S., Li, X.-Y.: ‘A novel automatic train operation algorithm based on iterative learning control theory’. Proc. IEEE Conf. Service Operations, Logistics and Informatics, 2008, pp. 17661770.
    9. 9)
      • 25. Hong-Rui, W., Zhi-Wang, C., Jian-Xiong, L.: ‘Direct generalized predictive control of parameter adaptation for nonlinear systems’, Acta Autom. Sin., 2007, 33, (10), pp. 11101114.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 28. Mosca, E.: ‘Optimal, Predictive, and Adaptive Control’ (Prentice-Hall, Englewood Cliffs, 1995), 7, pp. 205220.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 9. Wang, J., Qing, J.W., Li, H.B.: ‘Application of PID-type generalized predictive control algorithm in lateral semi-active suspension system for high-speed train’, J. Southwest Univ. Sci. Technol., 2010, 4, (2), pp. 016.
    20. 20)
      • 24. Hui, Y., Kun-peng, Z., Xin, W., et al: ‘Generalized multiple-model predictive control method of high-speed train’, J. Chin. Railway Soc., 2011, 33, (8), pp. 8087.
    21. 21)
      • 23. Novak, P.C.J., Bobal, V.: ‘Modeling and predictive control of a nonlinear system using local model network’. Prerine 18th IFAC World Congress, 2011.
    22. 22)
    23. 23)
      • 4. Wen, S.H., Yang, J.W., Rad, A.B., Chen, S.Y., Hao, P.C.: ‘Weighted multimodel predictive function control for automatic train operation system’, J. Appl. Math., 2014, 2014, pp. 8, Article ID 520627. doi:10.1155/2014/520627.
    24. 24)
    25. 25)
      • 6. Jin, Y., Qian, Q.Q., He, Z.Y.: ‘Research on application of two-degree fuzzy neural network in ATO of high speed train’, J. Chin. Railway Soc., 2008, 30, (5), pp. 5256.
    26. 26)
    27. 27)
      • 26. Velmurugan, T., Santhanam, T.: ‘Performance evaluation of K-means and fuzzy C-means clustering algorithms for statistical distributions of input data points’, Eur. J. Sci. Res., 2010, 46, (3), pp. 320330.
    28. 28)
    29. 29)
      • 27. Chou, C.-H., Su, M.-C., Lai, E.: ‘A new cluster validity measure and its application to image compression’, Pattern Anal. Appl., 2004.
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0091
Loading

Related content

content/journals/10.1049/iet-its.2013.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading