http://iet.metastore.ingenta.com
1887

Appearance-based approach to hybrid metric-topological simultaneous localisation and mapping

Appearance-based approach to hybrid metric-topological simultaneous localisation and mapping

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study a unified framework to carry out the simultaneous localisation and mapping of a mobile robot combining metric and topological techniques is presented. The robot moves in a real indoor environment and the algorithm makes use of the information provided by an omnidirectional camera mounted on the robot and its internal odometry. The hybrid approach consists in constructing simultaneously two maps of the environment, one metric and other topological with relationships between them which are updated in each step. The robot goes through the environment to build up a map while continuously captures images. To build the topological map the most relevant information from the scenes is extracted using a global appearance descriptor. A new node is added to the map when the appearance between two images is sufficiently different. Also, the authors check if there is a loop closure with a previous node. At the same time, a metrical map of the environment is computed. With this aim, the authors estimate the position of the robot when it captures a new image using a Monte–Carlo algorithm. The authors show how it is possible to obtain a reasonable performance both in time and accuracy in an indoor environment, when the involved parameters are properly tuned.

References

    1. 1)
      • R. Smith , M. Self , P. Cheeseman .
        1. Smith, R., Self, M., Cheeseman, P.: ‘A stochastic map for uncertain spatial relationships’. Proc. Fourth Int. Symp.. Cambridge, MA, USA, 1988, pp. 467474..
        . Proc. Fourth Int. Symp.. Cambridge , 467 - 474
    2. 2)
      • S. Tully , H. Moon , G. Kantor , H. Choset .
        2. Tully, S., Moon, H., Kantor, G., Choset, H.: ‘Iterated filters for bearing-only SLAM’. Proc. IEEE Int. Conf. on Robotics and Automation (ICRA). Pasadena, California, USA, 2008, pp. 14421448.
        . Proc. IEEE Int. Conf. on Robotics and Automation (ICRA). Pasadena , 1442 - 1448
    3. 3)
    4. 4)
    5. 5)
      • A. Diosi , L. Kleeman .
        5. Diosi, A., Kleeman, L.: ‘Advanced sonar and laser range finder fusion for simultaneous localization and mapping’. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Sendai, Japan, 2004, pp. 18541859.
        . Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems , 1854 - 1859
    6. 6)
      • A. Angeli , S. Doncieux , J. Meyer , D. Filliat .
        6. Angeli, A., Doncieux, S., Meyer, J., Filliat, D.: ‘Visual topological SLAM and global localization’. Proc. of IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA, 2009, pp. 20292034.
        . Proc. of IEEE International Conference on Robotics and Automation , 2029 - 2034
    7. 7)
    8. 8)
      • A. Romero , M. Cazorla . (2010)
        8. Romero, A., Cazorla, M.: ‘Topological SLAM using omnidirectional images: merging feature detectors and graph-matching’, in: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P., (Eds.), ‘Advanced concepts for intelligent vision systems’, (6474LNCS). Springer, Berlin, Heidelberg, 2010, pp. 464475.
        .
    9. 9)
      • E. Motard , B. Raducanu , V. Cadenat , J. Vitrià .
        9. Motard, E., Raducanu, B., Cadenat, V., Vitrià, J.: ‘Incremental on-line topological map learning for a visual homing application’. Proc. of IEEE International Conference on Robotics and Automation, 2007, pp. 20492054.
        . Proc. of IEEE International Conference on Robotics and Automation , 2049 - 2054
    10. 10)
    11. 11)
      • S. Tully , H. Moon , D. Morales , G. Kantor , H. Choset .
        11. Tully, S., Moon, H., Morales, D., Kantor, G., Choset, H.: ‘Hybrid localization using the hierarchical atlas’. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 28572864.
        . Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2857 - 2864
    12. 12)
      • J.L. Blanco , J.A. Fernandez , J. Gonzalez .
        12. Blanco, J.L., Fernandez, J.A., Gonzalez, J.: ‘A new approach for large-scale localization and mapping: hybrid metric-topological SLAM’. Proc. of the IEEE International Conference on Robotics and Automation, 2007, pp. 20612067.
        . Proc. of the IEEE International Conference on Robotics and Automation , 2061 - 2067
    13. 13)
    14. 14)
      • M. Montemerlo , S. Thrun .
        14. Montemerlo, M., Thrun, S.: ‘Simultaneous localization and mapping with unknown data association using FastSLAM’. Proc. of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003, vol. 2, pp. 19851991.
        . Proc. of IEEE International Conference on Robotics and Automation , 1985 - 1991
    15. 15)
      • D. Hähnel , W. Burgard , D. Fox , S. Thrun .
        15. Hähnel, D., Burgard, W., Fox, D., Thrun, S.: ‘An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements’. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 2003, pp. 206211.
        . Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems , 206 - 211
    16. 16)
    17. 17)
      • A. Gil , O. Reinoso , L. Pay , M. Ballesta , J. Pedrero .
        17. Gil, A., Reinoso, O., Pay, L., Ballesta, M., Pedrero, J.: ‘Managing data association in visual SLAM using SIFT features’, International Journal of Factory Automation, Robotics and Soft Computing, 2007, 1, pp. 179184.
        . International Journal of Factory Automation, Robotics and Soft Computing , 179 - 184
    18. 18)
      • W. Lui , R. Jarvis .
        18. Lui, W., Jarvis, R.: ‘A pure vision-based approach to topological SLAM’. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 37843791.
        . Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems , 3784 - 3791
    19. 19)
    20. 20)
      • S. Tully , G. Kantor , H. Choset , F. Werner .
        20. Tully, S., Kantor, G., Choset, H., Werner, F.: ‘A multi-hypothesis topological SLAM approach for loop closing on edge-ordered graphs’. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Piscataway, NJ, USA, 2009, pp. 49434948.
        . Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems , 4943 - 4948
    21. 21)
    22. 22)
    23. 23)
      • A.C. Murillo , J.J. Guerrero , C. Sagüés .
        23. Murillo, A.C., Guerrero, J.J., Sagüés, C.: ‘SURF features for efficient robot localization with omnidirectional images’. Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, USA, 2007, pp. 39013907.
        . Proc. IEEE Int. Conf. on Robotics and Automation , 3901 - 3907
    24. 24)
      • C. Valgren , A. Lilienthal .
        24. Valgren, C., Lilienthal, A.: ‘SIFT, SURF and seasons: long-term outdoor localization using local features’. Proc. European Conf. on Mobile Robots, Freiburg, Germany, 2007, pp. 253258.
        . Proc. European Conf. on Mobile Robots , 253 - 258
    25. 25)
    26. 26)
      • T.D. Barfoot .
        27. Barfoot, T.D.: ‘Online Visual Motion Estimation using FastSLAM with SIFT Features’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Edmonton, s, 2005, pp. 579585.
        . IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Edmonton , 579 - 585
    27. 27)
      • A. Gil , O. Reinoso , A. Vicente , C. Fernández , L. Payá . (2005)
        28. Gil, A., Reinoso, O., Vicente, A., Fernández, C., Payá, L.: ‘Monte Carlo localization using SIFT features’. Pattern Recognition and Image Analysis, (3522> LCNS), 2005, pp. 623630.
        .
    28. 28)
      • C.G. Harris , M. Stephens .
        29. Harris, C.G., Stephens, M.: ‘A combined corner and edge detector’. Proc. of Alvey Vision Conference, 1998, pp. 147151.
        . Proc. of Alvey Vision Conference , 147 - 151
    29. 29)
      • M. Jogan , A. Leonardis .
        30. Jogan, M., Leonardis, A.: ‘Robust localization using eigenspace of spinning-images’. Proc. IEEE Workshop on Omnidirectional Vision. Hilton Head Island, USA, 2000, pp. 3744.
        . Proc. IEEE Workshop on Omnidirectional Vision. Hilton Head Island , 37 - 44
    30. 30)
      • L. Paya , L. Fernandez , O. Reinoso , A. Gil , D. Ubeda .
        31. Paya, L., Fernandez, L., Reinoso, O., Gil, A., Ubeda, D.: ‘Appearance-based dense maps creation. Comparison of compression techniques with panoramic images’. Proc. Int. Conf. on Informatics in Control, Automation and Robotics, Milan, Italy, 2009, pp. 238246.
        . Proc. Int. Conf. on Informatics in Control, Automation and Robotics , 238 - 246
    31. 31)
      • A. Pretto , E. Menegatti , E. Pagello , Y. Jitsukawa , R. Ueda , T. Arai .
        32. Pretto, A., Menegatti, E., Pagello, E., Jitsukawa, Y., Ueda, R., Arai, T.: ‘Toward image-based localization for AIBO using wavelet transform’. Proc. Artificial Intelligence and Human-Oriented Computing, Berlin, Heidelberg, 2007, pp. 831838.
        . Proc. Artificial Intelligence and Human-Oriented Computing , 831 - 838
    32. 32)
    33. 33)
      • F. Rossi , A. Ranganathan , F. Dellaert , E. Menegatti .
        34. Rossi, F., Ranganathan, A., Dellaert, F., Menegatti, E.: ‘Toward topological localization with spherical Fourier transform and uncalibrated camera’. Proc. Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots, Venice, Italy, 2008, pp. 319330.
        . Proc. Int. Conf. on Simulation, Modeling and Programming for Autonomous Robots , 319 - 330
    34. 34)
    35. 35)
      • F. Amorós , L. Payá , Ó. Reinoso , L. Fernández , J.M. Marín .
        36. Amorós, F., Payá, L., Reinoso, Ó., Fernández, L., Marín, J.M.: ‘Visual map building and localization with an appearance-based approach. Comparisons of techniques to extract information of panoramic images’. Proc. Int. Conf. on Informatics in Control, Automation and Robotics, Madeira, Portugal, 2010, pp. 423426.
        . Proc. Int. Conf. on Informatics in Control, Automation and Robotics , 423 - 426
    36. 36)
      • F. Amorós , L. Payá , Ó. Reinoso , L.M. Jiménez .
        37. Amorós, F., Payá, L., Reinoso, Ó., Jiménez, L.M.: ‘Comparison of global-appearance techniques applied to visual map building and localization’. Proc. Int. Conf. on Computer Vision Theory and Applications, Rome, Italy, 2012, vol. 2, pp. 395398.
        . Proc. Int. Conf. on Computer Vision Theory and Applications , 395 - 398
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • J. Wu , H.I. Christensen , J.M. Rehg .
        41. Wu, J., Christensen, H.I., Rehg, J.M.: ‘Visual place categorization: problem, dataset, and algorithm’. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, USA, 2009, pp. 47634770.
        . Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems , 4763 - 4770
    41. 41)
      • J. Folkesson , H. Christensen .
        42. Folkesson, J., Christensen, H.: ‘Outdoor exploration and SLAM using a compressed filter’. Proc. IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, 2003, vol. 1, pp. 419426.
        . Proc. IEEE Int. Conf. on Robotics and Automation , 419 - 426
    42. 42)
      • R. Gonzalez , P. Wintz . (1987)
        43. Gonzalez, R., Wintz, P.: ‘Digital image processing’ (Addison, 1987).
        .
    43. 43)
    44. 44)
      • L. Fernandez , L. Paya , O. Reinoso , A. Gil , M. Julia , M. Ballesta .
        45. Fernandez, L., Paya, L., Reinoso, O., Gil, A., Julia, M., Ballesta, M.: ‘Robust methods for robot localization under changing illumination conditions. Comparison of different filtering techniques’. Proc. Int. Conf. on Agents and Artificial Intelligence, Valencia, Spain, 2010, vol. 1, pp. 223228.
        . Proc. Int. Conf. on Agents and Artificial Intelligence , 223 - 228
    45. 45)
      • D. Valiente , L. Fernandez , A.G. Aparicio , L.P. Castello , O.R. Garcia .
        46. Valiente, D., Fernandez, L., Aparicio, A.G., Castello, L.P., Garcia, O.R.: ‘Visual Odometry through appearance and feature-based method with omnidirectional images’, J. Robot., 2012, 2012, pp. 130.
        . J. Robot. , 13 - 0
    46. 46)
      • D. Fox , W. Burgard , S. Thrun .
        47. Fox, D., Burgard, W., Thrun, S.: ‘Markov localization for mobile robots in dynamic environments’, J. Artif. Intell. Res., 1999, 11, pp. 391427.
        . J. Artif. Intell. Res. , 391 - 427
    47. 47)
    48. 48)
      • A.F.M. Smith , A.E. Gelfand .
        49. Smith, A.F.M., Gelfand, A.E.: ‘Bayesian statistics without tears: a sampling-resampling perspective’, Am. Stat., 1992, 46, (2), pp. 8488.
        . Am. Stat. , 2 , 84 - 88
    49. 49)
      • 50. ROS. http://www.ros.org, 2012.
        .
    50. 50)
      • C. Stachniss , G. Grisetti , D. Hähnel , W. Burgard .
        51. Stachniss, C., Grisetti, G., Hähnel, D., Burgard, W.: ‘Improved Rao-Blackwellized mapping by adaptive sampling and active loop-closure’. Proc. Workshop on Self-Organization of Adaptive Behavior. Ilmenau, Germany, 2004, pp. 115.
        . Proc. Workshop on Self-Organization of Adaptive Behavior. Ilmenau , 1 - 15
    51. 51)
      • G. Seber . (1984)
        52. Seber, G.: ‘Multivariate observations’ (Wiley Interscience, 1984).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0086
Loading

Related content

content/journals/10.1049/iet-its.2013.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address