access icon free Study of a geo-multicast framework for efficient message dissemination at unmanned level crossings

Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled ‘Intelligent-Transport-Systems to improve safety at road/rail crossings’. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.

Inspec keywords: message passing; multicast protocols; routing protocols; railway communication; vehicular ad hoc networks

Other keywords: LX; VANET; vehicular ad hoc networks; cooperative level crossings; financial losses; intelligent transport systems; positioning technologies; train collisions; road-rail level crossings; receiver-based geomulticast protocol; unmanned level crossings; routing protocols; motorists; Government and industry funded project; message dissemination; CLX

Subjects: Mobile radio systems; Communication network design, planning and routing; Protocols

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 19. Mauve, M., Widmer, A., Hartenstein, H.: ‘A survey on position-based routing in mobile ad hoc networks’, IEEE Netw., 2001, 15, (6), pp. 3039 (doi: 10.1109/65.967595).
    10. 10)
      • 16. Stojmenovic, I., Nayak, A., Kuruvila, J.: ‘Design guidelines for routing protocols in ad hoc and sensor networks with a realistic physical layer’, IEEE Commun. Mag., 2005, 43, (3), pp. 101106 (doi: 10.1109/MCOM.2005.1404603).
    11. 11)
      • 11. Fasolo, E., Zanella, A., Zorzi, M.: ‘An effective broadcast scheme for alert message propagation in vehicular ad hoc networks’. Proc. IEEE Int. Conf. on Communications (ICC), 2006.
    12. 12)
      • 1. ATSB: ‘Australian rail safety occurance data’ (Australian Transport and Safety Bureau (ATSB), 2009).
    13. 13)
      • 8. Sato, K., Arai, H., Shimizu, T., Takada, M.: ‘Obstruction detector using ultrasonic sensors for upgrading the safety of a level crossing’. Int. Conf. Developments in Mass Transit Systems (Conf. Publ. No. 453), 1998.
    14. 14)
      • 23. Füßler, H., Mauve, M., Hartenstein, H., Käsemann, M., Vollmer, D.: ‘Location-based routing for vehicular ad-hoc networks’. ACM Mobicom '02, 2002.
    15. 15)
      • 6. Ku, B.-Y.: ‘Grade-crossing safety’, IEEE Veh. Technol. Mag., 2010, 5, (3), pp. 7581 (doi: 10.1109/MVT.2010.938274).
    16. 16)
      • 12. Yang, Y.-T., Chou, L.-D.: ‘Position-based adaptive broadcast for inter-vehicle communications’. IEEE Int. Conf. on Communications Workshops, ICC Workshops '08, 2008, pp. 410414.
    17. 17)
      • 28. Eichler, S.: ‘Performance evaluation of the IEEE 802.11p WAVE communication standard’. Proc. 66th IEEE Vehicular Technology Conf. (VTC-2007 Fall), 2007.
    18. 18)
      • 34. An, B., Kim, D.: ‘A geomulticast architecture and analysis model for ad-hoc networks’, in Mitrou, N., Kontovasilis, K., Rouskas, G., Iliadis, I., Merakos, L. (Eds.): ‘Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications’ (Springer, Berlin/Heidelberg, 2004), pp. 12701275.
    19. 19)
      • 2. ATSB: ‘Level crossing accident fatalities, rail safety statistics’ (Australian Transport and Safety Bureau (ATSB), 2003).
    20. 20)
      • 29. Ansari, K., Wang, C., Wand, L., Feng, Y.: ‘Vehicle-to-vehicle real-time relative positioning using 5.9 GHz DSRC media’. IEEE 78th Vehicular Technology Conf. (VTC 2013-Fall), 2013.
    21. 21)
      • 7. Reif, W., Schellhorn, G., Thums, A.: ‘Safety analysis of a radio-based crossing control system using formal methods’. The Ninth IFAC Symp.on Control in Transportation Systems, 2000, pp. 289294.
    22. 22)
      • 26. Feng, C.-H., Heinzelman, W.B.: ‘RBMulticast: receiver based multicast for wireless sensor networks’. IEEE Wireless Communications and Networking Conf. (WCNC), 2009, pp. 16.
    23. 23)
      • 24. Riley, G.F., Ammar, M.H., Clay, L.M.: ‘Receiver-based multicast scoping: a new cost-conscious join/leave paradigm’. Proc. Sixth Int. Conf. on Network Protocols, 1998, 1998.
    24. 24)
      • 3. Singh, J., et al: ‘Cooperative intelligent transport systems to improve safety at level crossing’. The 12th Global Level Crossing and Trespass Symp., London, 2012.
    25. 25)
      • 4. ATSB: ‘Monograph 10: Level crossing accidents – fatal accidents at level crossings’ (Australian Transport and Safety Bureau (ATSB), 2002).
    26. 26)
      • 21. Schwingenschlogl, C., Kosch, T.: ‘Geocast enhancements of AODV for vehicular networks’, ACM Mob. Comput. Commun. Rev., 2002, 6, (3), pp. 9697 (doi: 10.1145/581291.581307).
    27. 27)
      • 20. Tee, C.A.T.H., Lee, A.C.R.: ‘Survey of position based routing for Inter vehicle communication system’. First Int. Conf. on Distributed Framework and Applications, 2008, pp. 174182.
    28. 28)
      • 33. Ko, Y.B., Vaidya, N.H.: ‘Geocasting in mobile ad hoc networks: location-based multicast algorithms’. Proc. Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA ’99), 1999, pp. 101110.
    29. 29)
      • 5. Jha, A., Agrawal, A., Bhaumik, C.: ‘Automatic alert generation from train to the people at unmanned level crossings using principles of IoT’, in Vinel, A., Mehmood, R., Berbineau, M., Garcia, C., Huang, C., Chilamkurti, N., (Eds.): ‘Communication Technologies for Vehicles’ (Springer, Berlin, Heidelberg, 2012), pp. 163173.
    30. 30)
      • 15. The Centre for Technology Infusion. Intelligent Transport System to Improve Safety: 2010 5 October. Available at http://www.latrobe.edu.au/tech-infusion/activities/AutoCRC.htm.
    31. 31)
      • 25. Li, L., Sun, L., Ma, J., Chen, C.: ‘A receiver-based opportunistic forwarding protocol for mobile sensor networks’. The 28th Int. Conf. on Distributed Computing Systems Workshops (ICDCS ’08), 2008, pp. 198203.
    32. 32)
      • 10. Biswas, S., Tatchikou, R., Dion, F.: ‘Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety’, IEEE Commun. Mag., 2006, 44, (1), pp. 7482 (doi: 10.1109/MCOM.2006.1580935).
    33. 33)
      • 14. Navas, J.C., Imielinski, T.: ‘GeoCast – geographic addressing and routing’. Proc. Third Annual ACM/IEEE Int. Conf. on Mobile computing and networking, 1997.
    34. 34)
      • 27. Jiang, D., Delgrossi, L.: ‘IEEE 802.11p: towards an international standard for wireless access in vehicular environments’. IEEE Vehicular Technology Conf. (VTC 2008-Spring), 2008, pp. 20362040.
    35. 35)
      • 31. Park, V.D., Corson, M.S.: ‘A highly adaptive distributed routing algorithm for mobile wireless networks’. Proc. IEEE INFOCOM ’97, Sixteenth IEEE Int. Conf. on Computer Communications, Joint Conf. IEEE Computer and Communications Societies, 1997.
    36. 36)
      • 9. Jiang, D., Taliwal, V., Meier, A., Holfelder, W., Herrtwich, R.: ‘Design of 5.9 GHZ DSRC-based vehicular safety communication’, IEEE Wirel. Commun., 2006, 13, (5), pp. 3643 (doi: 10.1109/WC-M.2006.250356).
    37. 37)
      • 30. Karp, B., Kung, H.T.: ‘GPSR: greedy perimeter stateless routing for wireless networks’. Proc. Sixth Annual Int. Conf. on Mobile computing and networking, 2000.
    38. 38)
      • 18. Maihofer, C.: ‘A survey of geocast routing protocols’, IEEE Commun. Surv. Tutor., 2004, 6, (2), pp. 3242 (doi: 10.1109/COMST.2004.5342238).
    39. 39)
      • 22. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., Mauve, M.: ‘A routing strategy for vehicular ad hoc networks in city environments’. Proc. IEEE Intelligent Vehicles Symp., 2003, 2003.
    40. 40)
      • 17. Lebhar, E., Lotker, Z.: ‘Unit disk graph and physical interference model: Putting pieces together’. IEEE Int. Symp. on Parallel & Distributed Processing, IPDPS, 2009, pp. 18.
    41. 41)
      • 13. Yu, S., Lee, M., Cho, G.: ‘An emergency message propagation method in highway traffic’, in Youn, H., Kim, M., Morikawa, H. (Eds.): ‘Ubiquitous Computing Systems’ (Springer, Berlin/Heidelberg, 2006), pp. 331343.
    42. 42)
      • 32. Imielinski, T., Navas, J.C.: ‘GPS-based geographic addressing, routing, and resource discovery’, Commun. ACM, 1999, 42, (4), pp. 8692 (doi: 10.1145/299157.299176).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0061
Loading

Related content

content/journals/10.1049/iet-its.2013.0061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading