Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Active collision avoidance system for steering control of autonomous vehicles

The study proposes an active collision avoidance system to allow safe lane-changing manoeuvres by self-steering vehicles in the presence of the uncertainties associated with nearby vehicles and the surrounding environment. This system integrates estimation of conflict probability, model predictive control and dedicated short-range communications (DSRC) techniques to ensure a collision-free operation. To accomplish this, the proposed system uses model predictive control to predict the future positions of vehicles and estimates the conflict probability so as to reduce the risk of collision. The system also exploits DSRC techniques to facilitate the gathering of information from nearby vehicles so that potential conflicts can be detected at an earlier stage. Autonomous vehicles can thus make adjustments based on the acquired data to avoid collisions in a real communication environment. The effectiveness of the method has been verified under experimental conditions. The influences of key parameters in the control method are examined.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 7. Roozenburg, A., Nicholson, A.: ‘Required passing sight distance for rural roads: a risk analysis’. Canterbury Univ., 2000.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 24. Taheri, S.: ‘An investigation and design of slip control braking systems integrated with four wheel steering’. PhD dissertation, Clemson University, 1990.
    11. 11)
    12. 12)
    13. 13)
      • 21. Soeterboek, R.: ‘Predictive control: a unified approach’ (Prentice-Hall, New York, 1992).
    14. 14)
      • 7. Roozenburg, A., Nicholson, A.: ‘Required passing sight distance for rural roads: a risk analysis’. Canterbury Univ., 2000.
    15. 15)
      • 26. Berend, N.: ‘Estimation of the probability of collision between two catalogued orbiting objects’, Adv. Space Res., 1999, 23, (1), pp. 243247 (doi: 10.1016/S0273-1177(99)00009-5).
    16. 16)
      • 16. Laureshyn, A., Svensson, A., Hyden, C.: ‘Evaluation of traffic safety, based on micro-level behavioural data: theoretical framework and first implementation’, Accident Anal. Prev., 2010, 42, pp. 16371646 (doi: 10.1016/j.aap.2010.03.021).
    17. 17)
      • 13. Polychronopoulos, A., Tsogas, M., Amditis, A.J., Andreone, L.: ‘Sensor fusion for predicting vehicles’ path for collision avoidance systems’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (3), pp. 549562 (doi: 10.1109/TITS.2007.903439).
    18. 18)
      • 25. Rajamani, R.: ‘Vehicle dynamic and control’ (Springer, New York, 2006).
    19. 19)
      • 19. Hatipoglu, C., Ozguner, U., Redmill, K.A.: ‘Automated lane change controller design’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (1), pp. 1322 (doi: 10.1109/TITS.2003.811644).
    20. 20)
      • 1. Matson, T.W., Forbes, T.W.: ‘Overtaking and passing requirements as determined from a moving vehicle’. Proc. Highway Research Board, 1938, 18, pp. 100112.
    21. 21)
      • 17. Lovegrove, G.R., Sayed, T.: ‘Macrolevel collision prediction models to enhance traditional reactive road safety improvement programs’, Transp. Res. Rec., 2007, 2019, pp. 6573 (doi: 10.3141/2019-09).
    22. 22)
      • 9. Parker, R., Valaee, S.: ‘Vehicular node localization using received-signal-strength indicator’, IEEE Trans. Veh. Technol., 2007, 56, (6), pp. 33713380 (doi: 10.1109/TVT.2007.907687).
    23. 23)
      • 10. Edwards, S., Evans, G., Blythe, P., Brennan, D., Selvarajah, K.: ‘Wireless technology applications to enhance traveller safety’, IET Intell. Transp. Syst., 2012, 6, (3), pp. 328335 (doi: 10.1049/iet-its.2011.0118).
    24. 24)
      • 11. Lytrivis, P., Thomaidis, G., Tsogas, M., Amditis, A.: ‘An advanced cooperative path prediction algorithm for safety applications in vehicular networks’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 669679 (doi: 10.1109/TITS.2011.2123096).
    25. 25)
      • 18. Shamir, T.: ‘How should an autonomous vehicle overtake a slower moving vehicle: design and analysis of an optimal trajectory’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 607610 (doi: 10.1109/TAC.2004.825632).
    26. 26)
      • 6. Gordon, D.A., Mart, T.M.: ‘Drivers’ decision in overtaking and passing’, Highw. Resour. Rec., 1968, 247, pp. 450.
    27. 27)
      • 8. Bar-Gera, H., Shinar, D.: ‘The tendency of drivers to pass other vehicles’, Transp. Res. F, 2005, 8, pp. 429439 (doi: 10.1016/j.trf.2005.06.001).
    28. 28)
      • 20. Camacho, E.F., Bordons, C.: ‘Model predictive control’ (Springer, New York, 2000).
    29. 29)
      • 2. Navarro, J., Mars, F., Young, M.S.: ‘Lateral control assistance in car driving: classification, review and future prospects’, IET Intell. Transp. Syst., 2011, 5, (3), pp. 207220 (doi: 10.1049/iet-its.2010.0087).
    30. 30)
      • 22. Hegeman, G., Brookhuis, K., Hoogendoorn, S.: ‘Opportunities of advanced driver assistance systems towards overtaking’, EUR. J. Transp. Infrastruct. Res., 2005, 5, (4), pp. 281296.
    31. 31)
      • 4. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: ‘Collision avoidance analysis for lane changing and merging’, IEEE Trans. Veh. Technol., 2000, 49, (6), pp. 22952308 (doi: 10.1109/25.901899).
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 14. Bana, S.V.: ‘Coordinating automated vehicles via communication’. PhD dissertation, University of California Berkeley, 2000.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 23. Pepy, R., Lambert, A., Mounier, H.: ‘Path planning using a dynamic vehicle model’. Proc. Second ICTTA, 2006, pp. 781786.
    40. 40)
      • 5. Cualain, D.O., Hughes, C., Glavin, M., Jones, E.: ‘Automotive standards-grade lane departure warning system’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 4457 (doi: 10.1049/iet-its.2010.0043).
    41. 41)
      • 24. Taheri, S.: ‘An investigation and design of slip control braking systems integrated with four wheel steering’. PhD dissertation, Clemson University, 1990.
    42. 42)
      • 3. Amditis, A., Floudas, N., Kaiser-Dieckhoff, U., et al: ‘Integrated vehicle's lateral safety: the lateral safe experience’, IET Intell. Transp. Syst., 2008, 2, (1), pp. 1526 (doi: 10.1049/iet-its:20070013).
    43. 43)
      • 14. Bana, S.V.: ‘Coordinating automated vehicles via communication’. PhD dissertation, University of California Berkeley, 2000.
    44. 44)
      • 12. Kenny, J.B.: ‘Dedicated short-range communication (DSRC) standards in the United States’, Proc. IEEE, 2011, 99, (7), pp. 11621182 (doi: 10.1109/JPROC.2011.2132790).
    45. 45)
      • 15. Wang, F., Yang, M., Yang, R.: ‘Conflict-probability-estimation-based overtaking for intelligent vehicles’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (2), pp. 366370 (doi: 10.1109/TITS.2009.2020200).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0056
Loading

Related content

content/journals/10.1049/iet-its.2013.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address