http://iet.metastore.ingenta.com
1887

Active collision avoidance system for steering control of autonomous vehicles

Active collision avoidance system for steering control of autonomous vehicles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study proposes an active collision avoidance system to allow safe lane-changing manoeuvres by self-steering vehicles in the presence of the uncertainties associated with nearby vehicles and the surrounding environment. This system integrates estimation of conflict probability, model predictive control and dedicated short-range communications (DSRC) techniques to ensure a collision-free operation. To accomplish this, the proposed system uses model predictive control to predict the future positions of vehicles and estimates the conflict probability so as to reduce the risk of collision. The system also exploits DSRC techniques to facilitate the gathering of information from nearby vehicles so that potential conflicts can be detected at an earlier stage. Autonomous vehicles can thus make adjustments based on the acquired data to avoid collisions in a real communication environment. The effectiveness of the method has been verified under experimental conditions. The influences of key parameters in the control method are examined.

References

    1. 1)
      • T.W. Matson , T.W. Forbes .
        1. Matson, T.W., Forbes, T.W.: ‘Overtaking and passing requirements as determined from a moving vehicle’. Proc. Highway Research Board, 1938, 18, pp. 100112.
        . Proc. Highway Research Board , 100 - 112
    2. 2)
      • J. Navarro , F. Mars , M.S. Young .
        2. Navarro, J., Mars, F., Young, M.S.: ‘Lateral control assistance in car driving: classification, review and future prospects’, IET Intell. Transp. Syst., 2011, 5, (3), pp. 207220 (doi: 10.1049/iet-its.2010.0087).
        . IET Intell. Transp. Syst. , 3 , 207 - 220
    3. 3)
      • A. Amditis , N. Floudas , U. Kaiser-Dieckhoff .
        3. Amditis, A., Floudas, N., Kaiser-Dieckhoff, U., et al: ‘Integrated vehicle's lateral safety: the lateral safe experience’, IET Intell. Transp. Syst., 2008, 2, (1), pp. 1526 (doi: 10.1049/iet-its:20070013).
        . IET Intell. Transp. Syst. , 1 , 15 - 26
    4. 4)
      • H. Jula , E.B. Kosmatopoulos , P.A. Ioannou .
        4. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: ‘Collision avoidance analysis for lane changing and merging’, IEEE Trans. Veh. Technol., 2000, 49, (6), pp. 22952308 (doi: 10.1109/25.901899).
        . IEEE Trans. Veh. Technol. , 6 , 2295 - 2308
    5. 5)
      • D.O. Cualain , C. Hughes , M. Glavin , E. Jones .
        5. Cualain, D.O., Hughes, C., Glavin, M., Jones, E.: ‘Automotive standards-grade lane departure warning system’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 4457 (doi: 10.1049/iet-its.2010.0043).
        . IET Intell. Transp. Syst. , 1 , 44 - 57
    6. 6)
      • D.A. Gordon , T.M. Mart .
        6. Gordon, D.A., Mart, T.M.: ‘Drivers’ decision in overtaking and passing’, Highw. Resour. Rec., 1968, 247, pp. 450.
        . Highw. Resour. Rec. , 4 - 50
    7. 7)
      • A. Roozenburg , A. Nicholson . (2000)
        7. Roozenburg, A., Nicholson, A.: ‘Required passing sight distance for rural roads: a risk analysis’. Canterbury Univ., 2000.
        .
    8. 8)
    9. 9)
      • R. Parker , S. Valaee .
        9. Parker, R., Valaee, S.: ‘Vehicular node localization using received-signal-strength indicator’, IEEE Trans. Veh. Technol., 2007, 56, (6), pp. 33713380 (doi: 10.1109/TVT.2007.907687).
        . IEEE Trans. Veh. Technol. , 6 , 3371 - 3380
    10. 10)
    11. 11)
      • P. Lytrivis , G. Thomaidis , M. Tsogas , A. Amditis .
        11. Lytrivis, P., Thomaidis, G., Tsogas, M., Amditis, A.: ‘An advanced cooperative path prediction algorithm for safety applications in vehicular networks’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 669679 (doi: 10.1109/TITS.2011.2123096).
        . IEEE Trans. Intell. Transp. Syst. , 3 , 669 - 679
    12. 12)
      • J.B. Kenny .
        12. Kenny, J.B.: ‘Dedicated short-range communication (DSRC) standards in the United States’, Proc. IEEE, 2011, 99, (7), pp. 11621182 (doi: 10.1109/JPROC.2011.2132790).
        . Proc. IEEE , 7 , 1162 - 1182
    13. 13)
    14. 14)
      • S.V. Bana . (2000)
        14. Bana, S.V.: ‘Coordinating automated vehicles via communication’. PhD dissertation, University of California Berkeley, 2000.
        .
    15. 15)
      • F. Wang , M. Yang , R. Yang .
        15. Wang, F., Yang, M., Yang, R.: ‘Conflict-probability-estimation-based overtaking for intelligent vehicles’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (2), pp. 366370 (doi: 10.1109/TITS.2009.2020200).
        . IEEE Trans. Intell. Transp. Syst. , 2 , 366 - 370
    16. 16)
    17. 17)
      • G.R. Lovegrove , T. Sayed .
        17. Lovegrove, G.R., Sayed, T.: ‘Macrolevel collision prediction models to enhance traditional reactive road safety improvement programs’, Transp. Res. Rec., 2007, 2019, pp. 6573 (doi: 10.3141/2019-09).
        . Transp. Res. Rec. , 65 - 73
    18. 18)
      • T. Shamir .
        18. Shamir, T.: ‘How should an autonomous vehicle overtake a slower moving vehicle: design and analysis of an optimal trajectory’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 607610 (doi: 10.1109/TAC.2004.825632).
        . IEEE Trans. Autom. Control , 4 , 607 - 610
    19. 19)
      • C. Hatipoglu , U. Ozguner , K.A. Redmill .
        19. Hatipoglu, C., Ozguner, U., Redmill, K.A.: ‘Automated lane change controller design’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (1), pp. 1322 (doi: 10.1109/TITS.2003.811644).
        . IEEE Trans. Intell. Transp. Syst. , 1 , 13 - 22
    20. 20)
      • E.F. Camacho , C. Bordons . (2000)
        20. Camacho, E.F., Bordons, C.: ‘Model predictive control’ (Springer, New York, 2000).
        .
    21. 21)
      • R. Soeterboek . (1992)
        21. Soeterboek, R.: ‘Predictive control: a unified approach’ (Prentice-Hall, New York, 1992).
        .
    22. 22)
      • G. Hegeman , K. Brookhuis , S. Hoogendoorn .
        22. Hegeman, G., Brookhuis, K., Hoogendoorn, S.: ‘Opportunities of advanced driver assistance systems towards overtaking’, EUR. J. Transp. Infrastruct. Res., 2005, 5, (4), pp. 281296.
        . EUR. J. Transp. Infrastruct. Res. , 4 , 281 - 296
    23. 23)
      • R. Pepy , A. Lambert , H. Mounier .
        23. Pepy, R., Lambert, A., Mounier, H.: ‘Path planning using a dynamic vehicle model’. Proc. Second ICTTA, 2006, pp. 781786.
        . Proc. Second ICTTA , 781 - 786
    24. 24)
      • S. Taheri . (1990)
        24. Taheri, S.: ‘An investigation and design of slip control braking systems integrated with four wheel steering’. PhD dissertation, Clemson University, 1990.
        .
    25. 25)
      • R. Rajamani . (2006)
        25. Rajamani, R.: ‘Vehicle dynamic and control’ (Springer, New York, 2006).
        .
    26. 26)
      • N. Berend .
        26. Berend, N.: ‘Estimation of the probability of collision between two catalogued orbiting objects’, Adv. Space Res., 1999, 23, (1), pp. 243247 (doi: 10.1016/S0273-1177(99)00009-5).
        . Adv. Space Res. , 1 , 243 - 247
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0056
Loading

Related content

content/journals/10.1049/iet-its.2013.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address