Active collision avoidance system for steering control of autonomous vehicles

Active collision avoidance system for steering control of autonomous vehicles

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study proposes an active collision avoidance system to allow safe lane-changing manoeuvres by self-steering vehicles in the presence of the uncertainties associated with nearby vehicles and the surrounding environment. This system integrates estimation of conflict probability, model predictive control and dedicated short-range communications (DSRC) techniques to ensure a collision-free operation. To accomplish this, the proposed system uses model predictive control to predict the future positions of vehicles and estimates the conflict probability so as to reduce the risk of collision. The system also exploits DSRC techniques to facilitate the gathering of information from nearby vehicles so that potential conflicts can be detected at an earlier stage. Autonomous vehicles can thus make adjustments based on the acquired data to avoid collisions in a real communication environment. The effectiveness of the method has been verified under experimental conditions. The influences of key parameters in the control method are examined.


    1. 1)
      • 1. Matson, T.W., Forbes, T.W.: ‘Overtaking and passing requirements as determined from a moving vehicle’. Proc. Highway Research Board, 1938, 18, pp. 100112.
    2. 2)
      • 2. Navarro, J., Mars, F., Young, M.S.: ‘Lateral control assistance in car driving: classification, review and future prospects’, IET Intell. Transp. Syst., 2011, 5, (3), pp. 207220 (doi: 10.1049/iet-its.2010.0087).
    3. 3)
      • 3. Amditis, A., Floudas, N., Kaiser-Dieckhoff, U., et al: ‘Integrated vehicle's lateral safety: the lateral safe experience’, IET Intell. Transp. Syst., 2008, 2, (1), pp. 1526 (doi: 10.1049/iet-its:20070013).
    4. 4)
      • 4. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: ‘Collision avoidance analysis for lane changing and merging’, IEEE Trans. Veh. Technol., 2000, 49, (6), pp. 22952308 (doi: 10.1109/25.901899).
    5. 5)
      • 5. Cualain, D.O., Hughes, C., Glavin, M., Jones, E.: ‘Automotive standards-grade lane departure warning system’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 4457 (doi: 10.1049/iet-its.2010.0043).
    6. 6)
      • 6. Gordon, D.A., Mart, T.M.: ‘Drivers’ decision in overtaking and passing’, Highw. Resour. Rec., 1968, 247, pp. 450.
    7. 7)
      • 7. Roozenburg, A., Nicholson, A.: ‘Required passing sight distance for rural roads: a risk analysis’. Canterbury Univ., 2000.
    8. 8)
    9. 9)
      • 9. Parker, R., Valaee, S.: ‘Vehicular node localization using received-signal-strength indicator’, IEEE Trans. Veh. Technol., 2007, 56, (6), pp. 33713380 (doi: 10.1109/TVT.2007.907687).
    10. 10)
    11. 11)
      • 11. Lytrivis, P., Thomaidis, G., Tsogas, M., Amditis, A.: ‘An advanced cooperative path prediction algorithm for safety applications in vehicular networks’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 669679 (doi: 10.1109/TITS.2011.2123096).
    12. 12)
      • 12. Kenny, J.B.: ‘Dedicated short-range communication (DSRC) standards in the United States’, Proc. IEEE, 2011, 99, (7), pp. 11621182 (doi: 10.1109/JPROC.2011.2132790).
    13. 13)
    14. 14)
      • 14. Bana, S.V.: ‘Coordinating automated vehicles via communication’. PhD dissertation, University of California Berkeley, 2000.
    15. 15)
      • 15. Wang, F., Yang, M., Yang, R.: ‘Conflict-probability-estimation-based overtaking for intelligent vehicles’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (2), pp. 366370 (doi: 10.1109/TITS.2009.2020200).
    16. 16)
    17. 17)
      • 17. Lovegrove, G.R., Sayed, T.: ‘Macrolevel collision prediction models to enhance traditional reactive road safety improvement programs’, Transp. Res. Rec., 2007, 2019, pp. 6573 (doi: 10.3141/2019-09).
    18. 18)
      • 18. Shamir, T.: ‘How should an autonomous vehicle overtake a slower moving vehicle: design and analysis of an optimal trajectory’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 607610 (doi: 10.1109/TAC.2004.825632).
    19. 19)
      • 19. Hatipoglu, C., Ozguner, U., Redmill, K.A.: ‘Automated lane change controller design’, IEEE Trans. Intell. Transp. Syst., 2003, 4, (1), pp. 1322 (doi: 10.1109/TITS.2003.811644).
    20. 20)
      • 20. Camacho, E.F., Bordons, C.: ‘Model predictive control’ (Springer, New York, 2000).
    21. 21)
      • 21. Soeterboek, R.: ‘Predictive control: a unified approach’ (Prentice-Hall, New York, 1992).
    22. 22)
      • 22. Hegeman, G., Brookhuis, K., Hoogendoorn, S.: ‘Opportunities of advanced driver assistance systems towards overtaking’, EUR. J. Transp. Infrastruct. Res., 2005, 5, (4), pp. 281296.
    23. 23)
      • 23. Pepy, R., Lambert, A., Mounier, H.: ‘Path planning using a dynamic vehicle model’. Proc. Second ICTTA, 2006, pp. 781786.
    24. 24)
      • 24. Taheri, S.: ‘An investigation and design of slip control braking systems integrated with four wheel steering’. PhD dissertation, Clemson University, 1990.
    25. 25)
      • 25. Rajamani, R.: ‘Vehicle dynamic and control’ (Springer, New York, 2006).
    26. 26)
      • 26. Berend, N.: ‘Estimation of the probability of collision between two catalogued orbiting objects’, Adv. Space Res., 1999, 23, (1), pp. 243247 (doi: 10.1016/S0273-1177(99)00009-5).

Related content

This is a required field
Please enter a valid email address