access icon free Mutually coupled multiple inductive loop system suitable for heterogeneous traffic

A magnetically coupled multiple inductive loop detector system is presented in this study. Automated detection, classification and measurement of speed of vehicles are challenging tasks, in a no-lane disciplined and heterogeneous traffic. This study proposes an inductive loop sensor wherein multiple numbers of small loops are placed within a large outer loop, for measurement of traffic parameters under such traffic. In the new system the outer loop alone is connected to the measurement unit and all the small loops are coupled inductively to the outer loop. This scheme is simple and effective and can be employed to convert an existing single loop system to a multiple loop system, suitable for heterogeneous traffic. The measurement is based on a synchronous detection method. A special excitation that ensures parallel resonance of the inductive system is employed, which keeps the power consumption minimum. The new system correctly sensed the vehicles, categorised and counted them in undisciplined traffic. The proposed system has been also extended to detect the direction of travel and speed of the vehicles. Results from the prototype developed were found to be accurate proving its practicality in real time traffic monitoring and intelligent transportation system (ITS) applications under a heterogeneous scenario.

Inspec keywords: power consumption; automated highways; velocity measurement; inductive sensors; road vehicles; road traffic

Other keywords: power consumption; parallel resonance; real-time traffic monitoring; vehicle speed measurement; heterogeneous traffic; mutually coupled multiple inductive loop system; no-lane disciplined traffic; inductive loop sensor; vehicle speed classification; vehicle speed automated detection; synchronous detection; measurement unit; traffic parameters; travel direction detection; ITS applications; magnetically coupled multiple inductive loop detector system

Subjects: Traffic engineering computing; Sensing devices and transducers

References

    1. 1)
    2. 2)
    3. 3)
      • 1. Federal highway Administration: ‘Traffic detector handbook’ (U.S. Department of Transportation, 2006, vol. 1, 3rd edn.) pp. 1.14.61.
    4. 4)
    5. 5)
    6. 6)
      • 2. Koerner, R.J., Park, C.: ‘Inductive loop vehicle detector’. U.S. Patent 3989932, 1976.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 8. Sun, C., Ritchie, S.G.: ‘Individual vehicle speed estimation using single loop inductive waveforms’, J. Transp. Eng., ASCE, 1999, 125, (6), pp. 531538 (doi: 10.1061/(ASCE)0733-947X(1999)125:6(531)).
    11. 11)
      • 6. Sun, C., Ritchie, S.G., Tsai, K.: ‘Algorithm development for derivation of section-related measures of traffic system performance using inductive loop detectors’, Transp. Res. Rec., J. Transp. Res. Board, 2007, 1643, (21), pp. 171180.
    12. 12)
      • 2. Koerner, R.J., Park, C.: ‘Inductive loop vehicle detector’. U.S. Patent 3989932, 1976.
    13. 13)
      • 5. Jang, J., Byun, S.: ‘Evaluation of traffic data accuracy using Korea detector testbed’, IET Intell. Transp. Syst., 2011, 5, (4), pp. 286293 (doi: 10.1049/iet-its.2011.0001).
    14. 14)
      • 15. Pallas-Areny, R., Webster, J.G.: ‘Sensors and signal conditioning’ (John Wiley & Sons, Inc., 2nd edn., 2001).
    15. 15)
      • 17. Available at http://www.lasertech.com/TruSpeed-Laser-Speed-Gun.aspx.
    16. 16)
      • 1. Federal highway Administration: ‘Traffic detector handbook’ (U.S. Department of Transportation, 2006, vol. 1, 3rd edn.) pp. 1.14.61.
    17. 17)
      • 3. Oh, Y., Lee, C.: ‘The decision of the optimal shape of inductive loop detector for real-time signal control’, J. Transp. Res. Soc. Korea, 1995, 13, (3), pp. 6786.
    18. 18)
      • 16. NI USB-6216, ‘16 Bit, 400 kS/s Isolated M series MIO DAQ, Bus powered’, available at http://sine.ni.com/nips/cds/print/p/lang/en/nid/207099.
    19. 19)
      • 13. Ali, S.S.M., George, B., Vanajakshi, L.: ‘A magnetically coupled inductive loop sensing system for less-lane disciplined traffic’. Proc. of IEEE I2MTC ’12, Graz, Austria, 13–16 May 2012, pp. 827832.
    20. 20)
      • 11. Zheng, P., McDonald, M., Jeffery, D.: ‘Event detection based on loop and journey time data’, IET Intell. Transp. Syst., 2008, 2, (2), pp. 113119 (doi: 10.1049/iet-its:20070042).
    21. 21)
      • 9. Ki, Y.-K., Baik, O.-K.: ‘Model for accurate speed measurement using double-loop detectors’, IEEE Trans. Veh. Tech., 2006, 55, (4), pp. 10941101 (doi: 10.1109/TVT.2006.877462).
    22. 22)
      • 4. Buch, N., Orwell, J., Velastin, S.A.: ‘Detection and classification of vehicles for urban traffic scenes’, IET Intell. Transp. Syst., 2008, 8, pp. 182187.
    23. 23)
      • 14. Bretterklieber, T., Zangl, H., Motz, M., Hammerschmidt, D., Werth, T.: ‘Versatile sensor front end for low-depth modulation capacitive sensors’. Proc. IEEE I2MTC 2008, British Columbia, Canada, May 2008, pp. 830835.
    24. 24)
      • 10. Ki, Y.-K.: ‘Speed – measurement model utilising embedded triple-loopsensors’, IET Intell. Transp. Syst., 2011, 5, (1), pp. 3237 (doi: 10.1049/iet-its.2008.0084).
    25. 25)
      • 7. Park, S., Ritchie, S.G.: ‘Innovative single-loop speed estimation model with advanced loop data’, IET. Intell. Transp. Syst., 2003, 4, (4), pp. 232243 (doi: 10.1049/iet-its.2009.0126).
    26. 26)
      • 12. Ali, S.S.M., George, B., Vanajakshi, L., Jayashankar, V.: ‘A multiple inductive loop vehicle detection system for heterogeneous and lane-less traffic’, IEEE Trans. Inst. Meas., 2012, 61, (5), pp. 13531360 (doi: 10.1109/TIM.2011.2175037).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0055
Loading

Related content

content/journals/10.1049/iet-its.2013.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading