access icon free Velocity difference control based on dynamic tracking of safe following distance in the process of vehicle following

To improve the quality of vehicular following behaviour in safety and efficiency, a new method, which combines the velocity difference control with the dynamic tracking of safe following distance closely, is presented to realise the dynamic optimisation of the following vehicle's behaviour and the spatial interval between the preceding and following vehicles. The corresponding mathematical model is given in this study, as well as control system design and the control algorithms for the following vehicle to adjust its own behaviour scientifically. Different from other vehicle following models, the fitting function is used to calculate dynamic safe following distance, which should be kept by the following vehicle from the preceding vehicle. The safe following distance can be obtained in real time by the following vehicle at any velocity from 0 to 500 km/h for the evaluation and the scientific adjustment of its own behaviour. The simulation verifies the feasibility and validity of this method, which can ensure the safe, efficient and smooth (comfort) operation of the following vehicle in its following process.

Inspec keywords: optimisation; control system synthesis; velocity control; vehicle dynamics

Other keywords: dynamic safe following distance; dynamic tracking; spatial interval; vehicular following behaviour; velocity difference control; dynamic optimisation; mathematical model; fitting function; following process; control system design

Subjects: Optimisation; Optimisation techniques; Transportation system control; Control system analysis and synthesis methods; Vehicle mechanics; Velocity, acceleration and rotation control

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 21. Krasemann, J.T.: ‘Greedy algorithm for railway traffic re-scheduling during disturbances: a Swedish case’, IET Intell. Transp. Syst., 2010, 4, (4), pp. 375386 (doi: 10.1049/iet-its.2009.0122).
    21. 21)
      • 12. Somda, F.H., Cormerais, H.: ‘Auto-adaptive and string stable strategy for intelligent cruise control’, IET Intell. Transp. Syst., 2011, 5, (3), pp. 168174 (doi: 10.1049/iet-its.2010.0016).
    22. 22)
      • 11. Dunbar, W., Caveney, D.S.: ‘Distributed receding horizon control of vehicle platoons: stability and string stability’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 620633 (doi: 10.1109/TAC.2011.2159651).
    23. 23)
      • 19. Ke, B.-R., Lin, C.-L., Yang, C.-C.: ‘Optimisation of train energy-efficient operation for mass rapid transit systems’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 5866 (doi: 10.1049/iet-its.2010.0144).
    24. 24)
      • 25. Pan, D., Zheng, Y.P.: ‘Study on the mechanism of high-speed train following operation control’, J. China Railw. Soc., 2013, 35, (3), pp. 5161 (in Chinese).
    25. 25)
      • 1. Helbing, D., Tilch, B.: ‘Generalized force model of traffic dynamics’, Phys. Rev. E, 1998, 58, (1), pp. 133138 (doi: 10.1103/PhysRevE.58.133).
    26. 26)
      • 15. Lin, T., Hwang, S., Green, P.A.: ‘Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator’, Safety Sci., 2009, 47, (5), pp. 620625 (doi: 10.1016/j.ssci.2008.08.004).
    27. 27)
      • 2. Bando, M., Hasebe, K., Nakyama, A., et al: ‘Dynamical model of traffic congestion and numerical simulation’, Phys. Rev. E, 1995, 51, (2), pp. 10351042 (doi: 10.1103/PhysRevE.51.1035).
    28. 28)
      • 4. Zhao, X., Gao, Z.: ‘A new car-following model: full velocity and acceleration difference model’, Eur. Phys. J. B, 2005, 47, (1), pp. 145150 (doi: 10.1140/epjb/e2005-00304-3).
    29. 29)
      • 24. ISO2631-4: ‘Mechanical vibration and shock – evaluation of human exposure to whole-body vibration – Part 4: Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guide way transport systems’ (British Standards Institution, 2001).
    30. 30)
      • 14. Treiber, M., Hennecke, A., Helbing, D.: ‘Congested traffic states in empirical observations and microscopic simulations’, Phys. Rev. E, 2000, 62, (2), pp. 18051824 (doi: 10.1103/PhysRevE.62.1805).
    31. 31)
      • 3. Jiang, R., Wu, Q.S., Zhu, Z.J.: ‘Full velocity difference model for a car-following theory’, Phys. Rev. E, 2001, 64, (1), pp. 017101-1–017101-4 (doi: 10.1103/PhysRevE.64.017101).
    32. 32)
      • 6. Gong, H.X., Liu, H.C., Wang, B.H.: ‘An asymmetric full velocity difference car-following model’, Phys. A, Stat. Mech. Appl., 2008, 387, (11), pp. 25952602 (doi: 10.1016/j.physa.2008.01.038).
    33. 33)
      • 5. Okumura, A., Tadaki, S.: ‘Asymmetric optimal velocity model’, J. Phys. Soc. Jpn., 2003, 72, (11), pp. 27542758 (doi: 10.1143/JPSJ.72.2754).
    34. 34)
      • 17. Lu, X.-Y., Madanat, S.: ‘Truck adaptive following distance based on threat assessment under variable conditions’, IET Intell. Transp. Syst., 2009, 3, (2), pp. 138147 (doi: 10.1049/iet-its:20080006).
    35. 35)
      • 13. Kesting, A., Treiber, M., Schoenhof, M., et al: ‘Adaptive cruise control design for active congestion avoidance’, Transp. Res. C, Emerg. Technol., 2008, 16, (6), pp. 668683 (doi: 10.1016/j.trc.2007.12.004).
    36. 36)
      • 10. Li, S., Li, K., Rajamani, R., et al: ‘Model predictive multi-objective vehicular adaptive cruise control’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 556566 (doi: 10.1109/TCST.2010.2049203).
    37. 37)
      • 26. Martinez, J.-J., Canudas-de-Wit, C.: ‘A safe longitudinal control for adaptive cruise control and stop-and-go scenarios’, IEEE Trans. Control Syst. Technol., 2007, 15, (2), pp. 246258 (doi: 10.1109/TCST.2006.886432).
    38. 38)
      • 7. Peng, G.H., Cai, X.H., Liu, C.Q., et al: ‘Optimal velocity difference model for a car-following theory’, Phys. Lett. A, 2011, 375, (45), pp. 39733977 (doi: 10.1016/j.physleta.2011.09.037).
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 18. Khayyam, H., Nahavandi, S., Davis, S.: ‘Adaptive cruise control look-ahead system for energy management of vehicles’, Expert Syst. Appl., 2012, 39, (3), pp. 38743885 (doi: 10.1016/j.eswa.2011.08.169).
    45. 45)
      • 27. Somda, F.H., Cormerais, H., Buisson, J.: ‘Intelligent transportation systems: a safe, robust and comfortable strategy for longitudinal monitoring’, IET Intell. Transp. Syst., 2009, 3, (2), pp. 188197 (doi: 10.1049/iet-its:20080042).
    46. 46)
      • 23. ISO2631-1: ‘Mechanical vibration and shock – evaluation of human exposure to whole-body vibration – Part 1: General requirements’ (International Organization for Standardization, 1997).
    47. 47)
      • 8. Lubashevsky, I., Wagner, P., Mahnke, R.: ‘Rational-driver approximation in car-following theory’, Phys. Rev. E, 2003, 68, (5), pp.|p 056109-1–056109-15 (doi: 10.1103/PhysRevE.68.056109).
    48. 48)
      • 9. Desjardins, C., Chaib-draa, B.: ‘Cooperative adaptive cruise control: a reinforcement learning approach’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 12481260 (doi: 10.1109/TITS.2011.2157145).
    49. 49)
      • 20. Baskar, L.D., De Schutter, B., Hellendoorn, J., et al: ‘Traffic control and intelligent vehicle highway systems: a survey’, IET Intell. Transp. Syst., 2011, 5, (1), pp. 3852 (doi: 10.1049/iet-its.2009.0001).
    50. 50)
      • 16. Moon, S., Moon, I., Yi, K.: ‘Design, tuning and evaluation of a full-range adaptive cruise control system with collision avoidance’, Control Eng. Pract., 2009, 17, (4), pp. 442455 (doi: 10.1016/j.conengprac.2008.09.006).
    51. 51)
      • 22. Baskar, L.D., De Schutter, B., Hellendoorn, J., et al: ‘Traffic management for automated highway systems using model-based predictive control’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 838847 (doi: 10.1109/TITS.2012.2186441).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2013.0040
Loading

Related content

content/journals/10.1049/iet-its.2013.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading