access icon free Design, implementation and optimisation of an energy harvesting system for vehicular ad hoc networks’ road side units

Vehicular ad hoc network (VANET) research has spanned a wide variety of topics in recent years. This study deals with a subject rarely discussed in the literatures, the design procedure of a road side unit (RSU) armed with solar energy-harvesting circuit and its power management module. Embedded UBICOM IP2022 platform was adopted to implement the intended RSU. A complete design steps of the electronic circuit were described and the necessary values of the system component, that is, solar cell panels, battery cells and the DC-DC converter was tuned to suite the design goals. In order to decrease the power consumption of the suggested RSU and to extend the lifetime of the batteries, a power management module based on an artificial neural network and green scheduler was suggested. This scheduler is located in the control centre and composed of three algorithms in order of execution: the prediction, ON/OFF and evaluation algorithms. The adoption of the green scheduler reduces the power consumption of the nodes, which extends the battery life and decreases the number of the required battery cells.

Inspec keywords: solar cells; telecommunication computing; telecommunication power management; neural nets; DC-DC power convertors; energy harvesting; cells (electric); vehicular ad hoc networks

Other keywords: DC-DC converter; solar energy harvesting circuit; energy harvesting system; multi hop ad hoc network; RSU; electronic circuit; vehicular ad hoc networks road side units; design procedure; artificial neural network; power consumption; optimisation; green scheduler; VANET; embedded UBICOM IP2022 platform; power management module

Subjects: Solar cells and arrays; Mobile radio systems; Power electronics, supply and supervisory circuits; Electrochemical conversion and storage; Energy harvesting; Communications computing; Neural computing techniques

References

    1. 1)
      • 12. Ott, J., Kutscher, D.: ‘Drive-thru internet: IEEE 802.11b for automobile users’ (INFOCOM, 2004), vol. 1.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 1. Khaled, Y., Tsukada, M., Santa Lozano, J., Ernst, T.: ‘On the design of efficient vehicular applications’. Proc. IEEE VTC'09, Barcelona, Spain, April, 2009.
    6. 6)
      • 13. Jhang, M.F., Liao, W.: ‘On cooperative and opportunistic channel access for vehicle to roadside (V2R) communications’ (GLOBECOM, 2008).
    7. 7)
      • 21. Gorlatova, M., Wallwater, A., Zussman, G.: ‘Networking low-power energy harvesting devices: measurements and algorithms’. 2011 Proc. IEEE INFOCOM, April 2011, pp. 16021610.
    8. 8)
      • 14. Zhao, J., Arnold, T., Zhang, Y., Cao, G.: ‘Extending drive-thru data access by vehicle-to-vehicle relay’. VANET ‘08: Proc. Fifth ACM Int. Workshop on Vehicular Inter-Networking, 2008.
    9. 9)
      • 5. Park, G.: ‘Overview of energy harvesting systems (for low-power electronics)’. Presentation at the First Los Alamos National Laboratory Engineering Institute Workshop: Energy Harvesting, 2005.
    10. 10)
      • 6. Ferro Solutions: ‘VEH-360: evaluation power system specifications’, available at: http://www.ferrosi.com/files/VEH360_datasheet.pdf.
    11. 11)
      • 25. TPS63000 Data Sheet, WWW.ti.com.
    12. 12)
      • 24. IP2022 Ubicom Data Sheet, WWW.Ubicom.com.
    13. 13)
      • 17. Zhang, Y., Zhao, J., Cao, G.: ‘On scheduling vehicle-roadside data access’. Proc. Fourth ACM Int. Workshop on Vehicular Ad Hoc Networks, 2007.
    14. 14)
      • 3. Alcaraz, J., Vales-Alonso, J., García-Haro, J.: ‘Control-based scheduling with QoS support for vehicle to infrastructure communications’ (IEEE Communications, 2009).
    15. 15)
      • 15. Nandan, A., Das, S., Pau, G., Gerla, M., Sanadidi, M.: ‘Co-operative downloading in vehicular ad-hoc wireless networks’ (WONS, 2005).
    16. 16)
      • 22. Levron, Y., Shmilovitz, D., Martínez-Salamero, L.: ‘A power management strategy for minimization of energy storage reservoirs in wireless systems with energy harvesting’, IEEE Trans. Circuits Syst. I: Regul. Pap., 2011, 58, (3), pp. 122125.
    17. 17)
      • 16. Rawat, D., Yan, G., Popescu, D., Weigle, M., Olariu, S.: ‘Dynamic adaptation of joint transmission power and contention window in VANET’ (VTC, 2009).
    18. 18)
      • 11. Zhang, L., Wu, Q., Solanas, A., Domingo-Ferrer, J.: ‘A scalable robust authentication protocol for secure vehicular communications’ (IEEE Transactions on Vehicular Technology, 2009).
    19. 19)
      • 7. Paradiso, J.A., Starner, T.: 2005. ‘Energy scavenging for mobile and wireless electronics’, Pervasive Comput., 2007, 4, (1), pp. 1827 (doi: 10.1109/MPRV.2005.9).
    20. 20)
      • 12. Ott, J., Kutscher, D.: ‘Drive-thru internet: IEEE 802.11b for automobile users’ (INFOCOM, 2004), vol. 1.
    21. 21)
      • 19. Tan, Y.K., Panda, S.K.: ‘Energy harvesting from hybrid indoor solar and thermal energy sources for enhanced performance of wireless sensor nodes’, IEEE Trans. Ind. Electron., 2011, 58, pp. 44244435 (doi: 10.1109/TIE.2010.2102321).
    22. 22)
      • 10. Li, F., Wang, Y.: ‘Routing in vehicular ad hoc networks: a survey’, IEEE Veh. Technol. Mag., 2007, 2, (2), pp. 1222 (doi: 10.1109/MVT.2007.912927).
    23. 23)
      • 9. EnOcean. Perpetuum International Edition 4(6). http://tinyurl.com/2lxbo5 (or www.enocean.com/fileadmin/redaktion/pdf/perpetuum/perpetuum_06_en.pdf), 2007.
    24. 24)
      • 20. Castagnetti, A., Pegatoquet, A., Belleudy, C., Auguin, M.: ‘An efficient state of charge prediction model for solar harvesting WSN platforms’. Proc. IWSSIP Int. Conf. Systems, Signals and Image Processing, Vienna, Austria, 2012, pp. 122125.
    25. 25)
      • 18. Tan, Y.K., Panda, S.K.: ‘Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread’, IEEE Trans. Instrum. Meas., 2011, 26, pp. 3850.
    26. 26)
      • 8. Roundy, S.: ‘Energy scavenging for wireless sensor nodes with a focus on vibration-to-electricity conversion’. Presentation atUniversity of California, Berkeley. http://tinyurl.com/2s8khk, 2003.
    27. 27)
      • 4. Mittag, J., Schmidt-Eisenlohr, F., Killat, M., Harri, J., Hartenstein, H.: ‘Analysis and design of effective and low-overhead transmission power control for VANETs’. Proc. Fifth ACM Int. Workshop on Vehicular Inter-Networking, ACM, 2008.
    28. 28)
      • 23. Dondi, D., Zappi, P., Šimunić Rosing, T.: ‘A scheduling algorithm for consistent monitoring results with solar powered high-performance wireless embedded systems’. Int. Symp. Low Power Electronics and Design (ISLPED), 2011.
    29. 29)
      • 2. Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., Madden, S.: ‘A measurement study of vehicular internet access using in situ Wi-Fi Networks’. Proc. 12th Annual Int. Conf. Mobile Computing and Networking, ACM, 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0206
Loading

Related content

content/journals/10.1049/iet-its.2012.0206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading