Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Acoustic signal based detection and localisation of faults in motorcycles

Vehicles produce dissimilar sound patterns under different working conditions. The study approaches detection and localisation of faults in motorcycles, by exploiting the variations in the spectral behaviour. Fault detection stage uses chaincode of the pseudospectrum of the sound signal. Fault localisation stage uses statistical features derived from the wavelet subbands. Dynamic time warping classifier is used for classification of samples into healthy and faulty in the first stage. In essence, the same classifier classifies the faulty samples into valve-setting, muffler leakage and timing chain faults in the second stage. Classification results are over 90% for both the stages. The proposed study finds applications in surveillance, fault diagnosis of vehicles, machinery, musical instruments etc.

References

    1. 1)
      • 17. Guo, B., Nixon, M.S., Damarla, T.: ‘Improving acoustic vehicle classification by information fusion’ (Springer Verlag, Pattern Analysis and Applications, 2012), vol. 15, no. 1, pp. 2943.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 22. www.physics.sfsu.edu/~dcuneo/radar-mount/music.pdf (for a tutorial on ‘The linear sampling method and the MUSIC algorithm’, by Margaret Cheney, 2003).
    13. 13)
      • 1. http://www.moneylife.in/article/car-sales-in-india-likely-to-expand-3-5-in-fy14-siam/32142.html [SIAM: Society of Indian Automobile Manufacturers, Predictions for two-wheeler sales in Financial year 2013–14]..
    14. 14)
      • 28. Furtună, T.F.: ‘Dynamic programming algorithms in speech recognition’, Rev. Inf. Econ. nr., 2, (46), 2008, pp. 9498.
    15. 15)
      • 17. Guo, B., Nixon, M.S., Damarla, T.: ‘Improving acoustic vehicle classification by information fusion’ (Springer Verlag, Pattern Analysis and Applications, 2012), vol. 15, no. 1, pp. 2943.
    16. 16)
      • 29. http://www.mqld.org.au/fileadmin/user_upload/state_files/qld/Documents/Forms/Pg120_Sound_Basics.pdf (For recording environment setup).
    17. 17)
      • 11. Datta, A., Mavroidis, C., Krishnasamy, J., Hosek, M.: ‘Neural network based fault diagnostics of industrial robots using wavelet multi-resolution analysis’. Proc. American Control Conf., New York City, USA, 2007, pp. 18581863.
    18. 18)
      • 18. Madain, M., Al-Mosaiden, A., Al-khassaweneh, M.: ‘Fault diagnosis in vehicle engines using sound recognition techniques’. Proc. IEEE Int. Conf. Electro/Information Technology (EIT), Illinois State University, Normal, IL, USA, 20–22 May 2010, pp. 14.
    19. 19)
      • 3. Sazali, P.M.P., Zubir, Y.M., Zin, M.: ‘Motorbike engine faults diagnosing system using entropy and functional link neural network in wavelet domain’. Proc. Int. Conf. Man–Machine Systems, Penang, Malaysia, 11–13 October 2009, pp. 2B4-12B4-5.
    20. 20)
      • 23. Pereira, L.A., Fernandes, D., Gazzana, D.S., Libano, F.B., Haffner, S.: ‘Application of the Welch, Burg and MUSIC Methods to the detection of rotor cage faults of induction motors’. IEEE/PES Transmission andDistribution Conf. Exposition, Caracas, Latin America, 15–18 August 2006, TDC ‘06. pp. 16.
    21. 21)
      • 8. Ayoubi, M.: ‘Fuzzy systems design based on a hybrid neural structure and application to the fault diagnosis of technical processes’, J. Control Eng. Pract., 1996, 4, (1), pp. 3542 (doi: 10.1016/0967-0661(95)00204-8).
    22. 22)
      • 13. Lin, J.: ‘Feature extraction of machine sound using wavelet and its application in fault diagnosis’, J. NDT&E Int., 2001, 34, pp. 2530 (doi: 10.1016/S0963-8695(00)00025-6).
    23. 23)
      • 9. He, D., Li, R., Bechhoefer, E.: ‘Split torque type gearbox fault detection using acoustic emission and vibration sensors’. Proc. IEEE Int. Conf. Networking, Sensing and Control, Chicago, USA, 11–13 April 2010, pp. 6266.
    24. 24)
      • 19. Zhenshan, L., Jianqun, W., Xuejun, R., Guozhong, Y.: ‘Traffic information extraction of vehicle acoustic signal based on wavelet packet analysis’. Proc. 29th Chinese Control Conf. (CCC), Beijing, China, 29–31 July 2010, pp. 54385440.
    25. 25)
      • 14. Ganjdanesh, Y., Manjili, Y.S., Vafaei, M., Zamanizadeh, E., Jahanshahii, E.: ‘Fuzzy fault detection and diagnosis under severely noisy conditions using feature-based approaches’. Proc. American Control Conf., Washington, USA, 11–13 June 2008, pp. 33193324.
    26. 26)
      • 6. Heidarbeigi, K., Ahmadi, H., Omid, M., Tabatabaeefar, A.: ‘Fault diagnosis of Massey Ferguson gearbox using power spectral density’, J. Agric. Technol., 2009, 5, (1), pp. 16.
    27. 27)
      • 15. Sun, H., Wu, T., Zhu, H.-c.: ‘Research on the vehicle fault diagnosis base on the fuzzy dependability algorithm’, Adv. Inf. Sci. Serv. Sci., 2012, 4, (3), pp. 9196.
    28. 28)
      • 26. Pikrakis, A., Theodoridis, S., Kamarotos, D.: ‘Recognition of isolated musical patterns using context dependent dynamic time warping’, IEEE Trans. Speech Audio Process., 11, (3), 2003, pp. 175183 (doi: 10.1109/TSA.2003.811533).
    29. 29)
      • 21. Schmidt, R.O.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., AP-34, (3), 1986, pp. 276280 (doi: 10.1109/TAP.1986.1143830).
    30. 30)
      • 27. Cowling, M., Sitte, R.: ‘Comparison of techniques for environmental sound recognition’, Pattern Recognit. Lett., 24, 2003, pp. 28952907 (doi: 10.1016/S0167-8655(03)00147-8).
    31. 31)
      • 25. Sakoe, H., Chiba, S.: ‘Dynamic programming algorithm optimization for spoken word recognition’, IEEE Trans. Acoustics, Speech Signal Process., 1978, 26, (1), pp. 4349 (doi: 10.1109/TASSP.1978.1163055).
    32. 32)
      • 24. http://www.conceptualwavelets.com/docs/wavelets_ch1.pdf (for DB4 wavelets).
    33. 33)
      • 4. Wu, J.D., Chang, E.C., Liao, S.Y., Kuo, J.M., Huang, C.K.: ‘Fault classification of a scooter engine platform using wavelet transform and artificial neural network’. Proc. Int. Multi Conf. Engineers and Computer Scientists, vol. 1, Hong Kong, 18–20 March 2009, pp. 5863.
    34. 34)
      • 5. Lin, J., Zuo, M.J.: ‘Gearbox fault diagnosis using adaptive wavelet filter’, Mech. Syst. Signal Process., 2003, 17, (6), pp. 12591269 (doi: 10.1006/mssp.2002.1507).
    35. 35)
      • 12. Luiz, A., Carneiro, G., da Silva, A.A., Upadhyaya, B.R.: ‘Incipient fault detection of motor-operated valves using wavelet transform analysis’, Nucl. Eng. Des., 2008, 238, (9), pp. 24532459 (doi: 10.1016/j.nucengdes.2008.03.013).
    36. 36)
      • 22. www.physics.sfsu.edu/~dcuneo/radar-mount/music.pdf (for a tutorial on ‘The linear sampling method and the MUSIC algorithm’, by Margaret Cheney, 2003).
    37. 37)
      • 10. Engin, S.N., Gulez, K.: ‘A wavelet transform–artificial neural networks (WT-ANN) based rotating machinery fault diagnostics methodology’. Proc. IEEE NSIP, Antalya, Turkey, 20–23 June 1999, pp. 714720.
    38. 38)
      • 2. Anami, B.S., Pagi, V.B., Magi, S.M.: ‘Wavelet based acoustic analysis for determining health condition of two-wheelers’, Elsevier J. Appl. Acoust., 2011, 72, (7), pp. 464469 (doi: 10.1016/j.apacoust.2011.01.015).
    39. 39)
      • 20. http://www.mathworks.in/help/toolbox/signal/pmusic.html (for MUSIC algorithm).
    40. 40)
      • 16. Bhave, N., Rao, P.: ‘Vehicle engine sound analysis applied to traffic congestion estimation’. Proc. CMMR/FRSM, Utkal University, Bhubaneswar, India, 9–12 March 2011.
    41. 41)
      • 7. JunHong, Z., Bing, H.: ‘Analysis of engine front noise using sound intensity techniques’, Mech. Syst. Signal Process., 2005, 19, pp. 213221 (doi: 10.1016/j.ymssp.2004.03.007).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0193
Loading

Related content

content/journals/10.1049/iet-its.2012.0193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address