access icon free Acoustic signal-based approach for fault detection in motorcycles using chaincode of the pseudospectrum and dynamic time warping classifier

The sound of a moving vehicle gives a clue of the fault. This study investigates fault detection of motorcycles using chaincode of the pseudospectrum. The motorcycle sound signals are analysed for spectral variations and these variations are traced by a chaincode. The chaincode features are used to classify the sample into healthy or faulty using dynamic time warping technique. MATLAB version 7.8.0.347 (R2009a) is used for effective implementation. The classification results obtained are over 91% and 93%, respectively, for faulty and healthy motorcycles. The results are comparable with the reported works based on wavelets. The proposed work finds applications in traffic census, traffic rule enforcement, machine fault discovery, automatic surveillance and the like.

Inspec keywords: motorcycles; acoustic signal processing; wavelet transforms; signal classification; fault diagnosis; mechanical engineering computing

Other keywords: automatic surveillance; machine fault discovery; motorcycle; wavelet transform; motorcycle sound signal; chaincode feature; dynamic time warping classifier; acoustic signal-based approach; fault detection; Matlab; pseudospectrum chaincode; traffic rule enforcement; traffic census; moving vehicle sound

Subjects: Maintenance and reliability; Signal processing and detection; Other transportation industries; Civil and mechanical engineering computing; Integral transforms; Reliability; Digital signal processing; Integral transforms; Mathematical analysis; Vehicle mechanics; Mechanical engineering applications of IT

References

    1. 1)
      • 5. Wei, L., Pu, H., Xu, L.: ‘Fault diagnosis for engine based on EMD and wavelet packet BP neural network’. Proc. Third Int. Symp. on Intelligent Information Technology Application, 2009, pp. 672676.
    2. 2)
      • 4. Wu, J.D., Chang, E.C., Liao, S.Y., Kuo, J.M., Huang, C.K.: ‘Fault classification of a scooter engine platform using wavelet transform and artificial neural network’. Proc. Int. MultiConf. of Engineers and Computer Scientists, IMECS 2009, Hong Kong, 2009, pp. 5863.
    3. 3)
      • 19. Averbuch, A., Zheludev, V., Rabin, N., Schclar, A.: ‘Wavelet-based acoustic detection of moving vehicles’, J. Multidimens. Syst. Signal Process., 2009, 20, (1), pp. 125 (doi: 10.1007/s11045-009-0079-2).
    4. 4)
      • 26. http://www.mathworks.in/help/toolbox/signal/pmusic.html (MUSIC algorithm).
    5. 5)
      • 2. Anami, B.S., Pagi, V.B., Magi, S.M.: ‘Wavelet based acoustic analysis for determining health condition of two-wheelers’, Elsevier J. Appl. Acoust., 2011, 72, (7), pp. 464469 (doi: 10.1016/j.apacoust.2011.01.015).
    6. 6)
      • 22. Jose, E., Lopez, H., Han, C., Jennifer, S.: ‘Target identification using wavelet-based feature extraction and neural network classifiers’, Technical Report, CYTEL Systems, Inc., 1999.
    7. 7)
      • 31. http://www.mqld.org.au/fileadmin/user_upload/state_files/qld/Documents/Forms/Pg120_Sound_Basics.pdf (Recording environment setup).
    8. 8)
      • 3. Zhang, J.H., Han, B.: ‘Analysis of engine front noise using sound intensity techniques’, J. Mech. Syst. Signal Process.’, 2005, 19, pp. 213221 (doi: 10.1016/j.ymssp.2004.03.007).
    9. 9)
      • 15. Ayoubi, M.: ‘Fuzzy systems design based on a hybrid neural structure and application to the fault diagnosis of technical processes’, J. Control Eng. Pract., 1996, 4, (1), pp. 3542 (doi: 10.1016/0967-0661(95)00204-8).
    10. 10)
      • 1. http://india-reports.in/future-growth-global-transitions/economy-in-transition/two-wheeler-segment-in-india/ (India-Reports on February 20, 2010).
    11. 11)
      • 23. Engin, S.N., Gulez, K.: ‘A wavelet transform – artificial neural networks (WT-ANN) based rotating machinery fault diagnostics methodology’. Proc. IEEE NSIP’ 99, Falez Hotel, Antalya, Turkey, 1999, pp. 714720.
    12. 12)
      • 29. Euisun, C., Chulhee, L.: ‘Feature extraction based on the Bhattacharyya distance’, Pattern Recognit., 2003, 36, pp. 17031709 (doi: 10.1016/S0031-3203(03)00035-9).
    13. 13)
      • 20. Zhi-yong, H.A.O., Jun, H.A.N.: ‘Identification of diesel front sound source based on continuous wavelet transform’, J. Zhejiang Univ. Sci., 2004, 5, (9), pp. 10691075 (doi: 10.1631/jzus.2004.1069).
    14. 14)
      • 10. Mahmoodabadi, S.Z., Ahmadian, A., Abolhasani, M.D.: ‘ECG feature extraction using Daubechies wavelets’. Proc. Fifth IASTED Int. Conf. on Visualization, Imaging and Image Processing, Benidorm, Spain, 7–9 September, 2005, pp. 343348.
    15. 15)
      • 14. Belotti, V., Crenna, F., Michelini, R.C., Rossi, G.B.: ‘Wavelet signal processing applied to railway wheelflat detection’. Proc. XVII IMEKO World Congress Metrology in the Third Millennium, Dubrovnik, Croatia, 22–27 June, 2003, pp. 14341437.
    16. 16)
      • 7. Lin, J., Zuo, M.J.: ‘Gearbox fault diagnosis using adaptive wavelet filter’, J. Mech. Syst. Signal Process., 2003, 17, (6), pp. 12591269 (doi: 10.1006/mssp.2002.1507).
    17. 17)
      • 30. Sakoe, H., Chiba, S.: ‘Dynamic programming algorithm optimization for spoken word recognition’, IEEE Trans. Acoust. Speech Signal Process., 1978, 26, (1), pp. 4349 (doi: 10.1109/TASSP.1978.1163055).
    18. 18)
      • 8. Junsheng, C., Dejie, Y., Yu, Y.: ‘A fault diagnosis approach for gears based on IMF-AR model and SVM’, EURASIP J. Advances in Signal Processing, Article ID 647135, 2008, pp. 7. doi:10.1155/2008/647135.
    19. 19)
      • 21. Xiaoling, W., Hairong, Q.: ‘Acoustic target classification using distributed sensor arrays’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 13–17 May 2002, pp. IV-4186IV-4186.
    20. 20)
      • 12. Verucchi, C.J., Acosta, G.G., Benger, F.A.: ‘A review on fault diagnosis of induction machines’, J. Latin Am. Appl. Res., 2008, 38, pp. 113121.
    21. 21)
      • 16. Jing, L.: ‘Feature extraction of machine sound using wavelet and its application in fault diagnosis’, NDT E Int., 2001, 34, pp. 2530 (doi: 10.1016/S0963-8695(00)00025-6).
    22. 22)
      • 9. Kamarulafizam, I., Salleh, S.-H., Najeb, J.M., Arif, A.K., Chowdhury, A.: ‘Heart sound analysis using MFCC and time-frequency distribution’, Proc. World Engineering Congress on Biomedical Engineering and Medical Physics, 2006, 14, pp. 946949.
    23. 23)
      • 25. Choe, H.C., Karlsen, R.E., Gerhart, G.R., Meitzler, T.: ‘Wavelet-based ground vehicle recognition using acoustic signals’. Proc. SPIE., March 1996, pp. 434445.
    24. 24)
      • 6. Heidarbeigi, K., Ahmadi, H., Omid, M., Tabatabaeefar, A.: ‘Fault diagnosis of Massey Ferguson gearbox using power spectral density’, J. Agricul. Technol., 2009, 5, (1), pp. 16.
    25. 25)
      • 27. Per-Erik, D.: ‘Euclidean Distance Mapping’, Comput. Graph. Image Process., 1980, 14, pp. 227248 (doi: 10.1016/0146-664X(80)90054-4).
    26. 26)
      • 17. Anami, B.S., Pagi, V.B.: ‘An acoustic signature based neural network model for type recognition of two-wheelers’. Proc. IEEE Int. Conf. on Multimedia Systems, Signal Processing and Communication Technologies, Aligarh, 14–16 March2009, pp. 2831.
    27. 27)
      • 11. Siril, Y., Naren, G., Mark, D.: ‘Condition monitoring using pattern recognition techniques on data from acoustic emissions’. Proc. 5th Int. Conf. on Machine Learning and Applications (ICMLA'06), Orlando, Florida, 14–16 December 2006, pp. 39.
    28. 28)
      • 28. http://www.en.wiktionary.org/wiki/Manhattan_distance (Manhattan distance).
    29. 29)
      • 13. Aveek, D., Constantinos, M., Jay, K., Martin, H.: ‘Neural network based fault diagnostics of industrial robots using wavelet multi-resolution analysis’. Proc. 2007 American Control Conf., New York City, USA, 11–13 July, 2007, pp. 18581863.
    30. 30)
      • 18. Averbuch, A., Hulata, E., Zheludev, V., Kozlov, I.: ‘A wavelet packet algorithm for classification and detection of moving vehicles’, J. Multidimens. Signals Signal Process., 2001, 12, (1), pp. 931 (doi: 10.1023/A:1008455010040).
    31. 31)
      • 24. Maciejewski, H., Mazurkiewicz, J., Skowron, K., Walkowiak, T.: ‘Neural networks for vehicle recognition’. Proc. Sixth Int. Conf. on Microelectronics for Neural Networks. Evolutionary and Fuzzy Systems, 1997, pp. 292296.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0086
Loading

Related content

content/journals/10.1049/iet-its.2012.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading