Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology

Here, the authors present a hardware design of fast multiplierless forward binary discrete cosine transform (BinDCT) based on quantum-dot cellular automata (QCA) technology. This new technology offers several features such as: small size, ultralow power consumption, and can operate at 1 THz. The simulation results in QCA Designer software confirm that the proposed circuit works well and can be used as a high-performance design in QCA technology. The analysis obtained from the implementation of QCA BinDCT indicates that the proposed architecture is superior to the existing based on classic metal-oxide (complementary metal-oxide semiconductor technology) technology. Here, the authors are going to introduce highly BinDCT module scaled with ultra-low power consuming. The proposed circuit requires 50% fewer power consuming compared to previous existing designs. The proposed architecture can attain a throughput of 800 mega pixel per second (Mpps). To design and verify the proposed architecture, QCADesigner tool and QCAPro tool are, respectively, employed for synthesis and power consumption estimation. Since the works in the field of QCA logic image processing have only started to bloom, the proposed contribution will engender a new thread of research in the field of real-time image and video treatment.

References

    1. 1)
      • 47. Yang, X., Cai, L., Zhao, X.: ‘Low power dual-edge triggered flip-flop structure in quantum dot cellular automata’, Electron. Lett., 2010, 46, pp. 825826, doi: 10.1049/el.2010.1090.
    2. 2)
      • 42. Rumi, Z., Walus, K., Wei, W.: ‘A method of majority logic reduction for quantum cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, (4), pp. 443450, doi: 10.1109/TNANO.2004.834177.
    3. 3)
      • 46. Bibhash, S., Anirban, N., Asmit, D.: ‘Multilayer design of QCA multiplexer’. Proc. of the IEEE India Conf. (INDICON), Mumbay, India, 2013, doi:10.1109/INDCON.2013.6725909.
    4. 4)
      • 12. Mo, L., Lent, S.: ‘High-speed metallic quantum-dot cellular automata’. Proc. 3rd IEEE Conf. Nanotechnol. (IEEE-NANO), August 2003, vol. 2, pp. 465468, doi: 10.1109/NANO.2003.1230946.
    5. 5)
      • 27. Heumpil, C., Swartzlander, E.: ‘Adder and multiplier design in quantum-dot cellular automata’, IEEE Trans. Comput., 2009, 58, (6), pp. 721727, doi: 10.1109/TC.2009.21.
    6. 6)
      • 10. Cham, W.: ‘Development of integer cosine transforms by the principle of dyadic symmetry’, IEEE Proc. I – Commun. Speech Vis., 1989, 136, pp. 276282, doi: 10.1109/78.969511.
    7. 7)
      • 8. Murphy, C., Harvey, M.: ‘Reconfigurable hardware implementation of BinDCT’, Electron. Lett., 2002, 38, (18), pp. 10121013, doi: 10.1049/el:20020711.
    8. 8)
      • 3. Primechaev, S., Frolov, A., Simak, B.: ‘Scene change detection using DCT features in transform domain video indexing’. 14th Int. Workshop Systems, Signals and Image Processing, 2007 and 6th EURASIP Conf. Focused on Speech and Image Processing, Multimedia Communications and Services, 2007, pp. 369372, doi: 10.1109/IWSSIP.2007.4381118.
    9. 9)
      • 17. Amlani, I., Orlov, A., Toth, G., et al: ‘Digital logic gate using quantum-dot cellular automata’, Science, 1999, 284, pp. 289291, doi: 10.1126/science.284.5412.289.
    10. 10)
      • 25. Heumpil, C., Swartzlander, E.: ‘Adder designs and analyses for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2007, 6, pp. 374383, doi: 10.1109/TNANO.2007.894839.
    11. 11)
      • 43. Sara, H., Mohammad, T., Keivan, N.: ‘An efficient quantum-dot cellular automata full-adder’, Sci. Res. Essays, 2012, 7, (2), pp. 177189, doi: 10.1016/j.mejo.2016.02.004.
    12. 12)
      • 5. Leszczuk, M., Duplaga, M.: ‘Algorithm for video summarization of bronchoscopy procedures’, Krakow-Polonia BioMedical Engineering On Line, 2011, 110, (10), pp. 117.
    13. 13)
      • 33. Moein, K., Reza, S.N.: ‘A novel modular decoder implementation in quantum-dot cellular automata (QCA)’. Int. Conf. on Nanoscience, Technology and Societal Implications (NSTSI), 2011, pp. 15, doi: 10.1109/NSTSI.2011.6111999.
    14. 14)
      • 52. Uma, S.P., Arjuna, M., Renato, J.C.: ‘Improved 8-point approximate DCT for image and video compression requiring only 14 additions’, IEEE Trans. Circuits Syst. I, 2014, 61, pp. 17271740, doi: 10.1109/TCSI.2013.2295022.
    15. 15)
      • 44. Mardiris, V., Karafyllidis, I.: ‘Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers’, Int. J. Circuit Theory Appl., 2010, 38, pp. 771785.
    16. 16)
      • 54. Daniel, L., Marios, P.: ‘A framework for selfreconfigurable DCTs based on multiobjective optimization of the power-performance-accuracy space’. 2012 7th Int. Work on Reconfigurable Commun Syst (ReCoSoC), 2012, p. 1, doi:10.1109/ReCoSoC.2012.6322903.
    17. 17)
      • 45. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘Two-dimensional schemes for clocking/timing of QCA circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (1), pp. 3444.
    18. 18)
      • 23. Mostafa, A., Kavehie, O., Navi, K.: ‘A novel design for quantum-dot cellular automata cells and full adders’, arXiv preprint arXiv:1204.2048, 2012, doi: 10.3923/jas.2007.3460.3468.
    19. 19)
      • 9. Liang, J., Tran, T.: ‘Fast multiplierless approximations of the DCT with the lifting scheme’, IEEE Trans. Signal Process., 2001, 49, pp. 30323044, doi: 10.1109/78.969511.
    20. 20)
      • 14. Pulimeno, A., Graziano, M., Sanginario, A., et al: ‘Bis-ferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault tolerance’, IEEE Trans. Nanotechnol., 2013, 12, (4), pp. 498507, doi: 10.1109/TNANO.2013.2261824.
    21. 21)
      • 21. Kianpour, M., Nadooshan, R.S.: ‘A novel quantum-dot cellular automata X-bit x 32-bit SRAM’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (3), pp. 827836.
    22. 22)
      • 6. Kumar, A., Bhandari, K., Padhy, P.: ‘Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing’, IET Signal Process., 2012, 6, (7), pp. 617625, doi: 10.1049/iet-spr.2011.0298.
    23. 23)
      • 1. Antonino, T., Matteo, M., Gianluca, P., et al: ‘Pipelined fast 2D-DCT accelerator for FPGA-based SoCs’. IEEE Computer Society Annual Symp. on ISVLSI ‘07, 9–11 March 2007, doi: 10.1109/ISVLSI.2007.13.
    24. 24)
      • 4. Ariki, Y, Saito, Y.: ‘Extraction of TV news articles based on scene extraction of TVcut detection using DCT clustering’. Int. Conf. on Image Processing, 1996. Proc., 1996, vol. 3, pp. 847850, doi: 10.1109/ICIP.1996.560881.
    25. 25)
      • 28. Moein, K., Reza, S.N.: ‘Novel 8-bit reversible full adder/subtractor using a QCA’, J. Comput. Electron., 2017, 16, (2), pp. 459472.
    26. 26)
      • 35. Tougaw, P.D., Lent, C.S.: ‘Logical devices implemented using quantum cellular automata’, J. Appl. Phys., 1994, 75, pp. 18181825.
    27. 27)
      • 36. Vamsi, V., Marco, O., Fabrizio, L.: ‘Two-dimensional schemes for clocking/timing of qca circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (1), pp. 3444, doi: 10.1109/TCAD.2007.907020.
    28. 28)
      • 7. Venkata, B., Venkateswarlu, C.: ‘Design of low power 2-D DCT architecture using reconfigurable architecture’, IOSR J Electron. Commun. Eng., 2012, 3, pp. 2025, ISSN: 2278-2834.
    29. 29)
      • 11. Agrawal, P., Ghosh, B.: ‘Innovative design methodologies in quantum dot cellular automata’, Int. J. Circuit Theory Appl., 2015, 43, (2), pp. 253262, doi: 10.1002/cta.1936.
    30. 30)
      • 19. Shaahin, A., Soheil, S., Samira, S., et alDesign and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata’, Microelectron. J., 2015, 46, pp. 4351, doi: 10.1016/j.mejo.2014.10.003.
    31. 31)
      • 30. Dallaki, H., Mehran, M.: ‘Novel subtractor design based on quantum-dot cellular automata (QCA) nanotechnology’, Int. J. Nanosci. Nanotechnol., 2015, 11, pp. 257262.
    32. 32)
      • 29. Reshi, I., Banday, T.: ‘Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata’. 2016 3rd Int. Conf. on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS), 2016, pp. 8994, doi: 10.1109/EMS.2015.74.
    33. 33)
      • 22. Cho, H., Swartzlander, E.: ‘Modular design of conditional sum adders using quantum-dot cellular automata’. Sixth IEEE Conf. on Nanotechnology, 2006, IEEE-NANO, 2006, pp. 363366, doi: 10.1109/NANO.2006.247652.
    34. 34)
      • 48. Anoop, V., Konrad, W., Vassil, S.D., et al: ‘Quantum-dot cellular automata of flip-flops’. ATIPS Laboratory, NW, Calgary, Alberta, Canada, 2003.
    35. 35)
      • 24. Heumpil, C., Swartzlander, E.: ‘Serial parallel multiplier design in quantum-dot cellular automata’. 18th IEEE Symp. on Computer Arithmetic, 2007 – ARITH'07, 2007, pp. 715, doi: 10.1109/ARITH.2007.32.
    36. 36)
      • 51. Vikramkumar, P., Sridharan, K.: ‘Efficient design of a hybrid adder in quantum dot cellular automata’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (9), pp. 15351548, doi: 10.1109/TVLSI.2010.2054120.
    37. 37)
      • 38. Ahmed, M., Ahmed, Y., Yasser, F., et alPerformance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)’, Circuits Syst., 2013, 4, pp. 147156, doi: 10.4236/cs.2013.42020.
    38. 38)
      • 15. Lent, C.S., Isaksen, B., Lieberman, M.: ‘Molecular quantum-dot cellular automata’, J. Am. Chemical Soc., 2003, 125, pp. 10561063, doi: 10.1021/ja026856g.
    39. 39)
      • 39. Ali, N.B., Sajjad, W., Nazir, H., et al: ‘A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis’, Alexandria Eng. J., 2017, doi:10.1016/j.aej.2017.01.022.
    40. 40)
      • 26. Chudasama, A., Sasamal, N.: ‘Implementation of 4 × 4 vedic multiplier using carry save adder in quantum-dot cellular automata’. IEEE, 2016 Int. Conf. on Communication and Signal Processing (ICCSP), 6–8 April 2016, doi: 10.1109/ICCSP.2016.7754355.
    41. 41)
      • 20. Chougule, P., Sen, B., Dongale, T.: ‘Realization of processing In-memory computing architecture using quantum dot cellular automata’, Microprocess. Microsyst., 2017, 52, pp. 4958, doi 10.1016/j.micpro.2017.04.022.
    42. 42)
      • 49. Tougaw, P.D., Craig, S.: ‘Dynamic behavior of quantum cellular automata’, J. Appl. Phys., 1996, 80, p. 4722, doi:10.1063/1.363455.
    43. 43)
      • 37. Angizi, S., Alkaldy, E., Bagherzadeh, N., et al: ‘Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata’, J. Low Power Electron., 2014, 10, pp. 259271. Available at http://dx.doi.org/ 10.1166/jolpe.2014.1320.
    44. 44)
      • 32. Bibhash, S., Mrinal, G., Samik, S.: ‘Design of sequential circuits in multilayer QCA structure’. 2013 Int. Symp. on Electronic System Design (ISED), 10–12 December 2013, doi: 10.1016/j.jcss.2014.04.012.
    45. 45)
      • 18. Zhang, R., Gupta, P., Jha, N.K.: ‘Synthesis of majority and minority networks and its applications to QCA, TPL and SET based nanotechnologies’. 18th Int. Conf. on VLSI Design, 2005, pp. 229234, doi: 10.1109/ICVD.2005.157.
    46. 46)
      • 53. Vaithiyanathan, D., Seshasayanan, R.: ‘Area and power efficient DCT architecture for image compression’, EURASIP J. Adv. Signal Process., 2014, doi: 10.1186/1687-6180-2014-180.
    47. 47)
      • 41. Peer, Z.A., Firdous, A., Hilal, A.K.: ‘A new F-shaped XOR gate and its implementations as novel adder circuits based quantum-dot cellular automata (QCA)’, J. Comput. Eng., 2014, 16, (3), Ver. I, pp. 110117, doi: 10.9790/0661-1631110117.
    48. 48)
      • 50. Tamoghna, P., Debashis, D., Tanay, C.: ‘Universal shift register implementation using quantum dot cellular automata’, Ain Shams Eng. J., 2016.
    49. 49)
      • 34. Mohamed, A., Marco, V., Mariagrazia, G.: ‘Quantum dot cellular automata check node implementation for LDPC decoders’, IEEE Trans. Nanotechnol., 2013, 12, (3), pp. 368377, doi: 10.1109/TNANO.2013.225142.
    50. 50)
      • 31. Moein, K., Reza, S., Keivan, N.: ‘A novel design of 8-bit adder/subtractor by quantum-dot cellular automata’, J. Comput. Syst. Sci., 2014, 80, pp. 14041414, doi: 10.1016/j.jcss.2014.04.012.
    51. 51)
      • 2. Jianhao, M., Yujen, J., Shih-Fu, C.: ‘Scene change detection in a MPEG compressed video sequence’. Proc. IST/SPIE Symp., February 1995, vol. 2419, pp. 112.
    52. 52)
      • 13. Imre, A.: ‘Experimental study of nanomagnets for magnetic quantum-dot cellular automata (MQCA) logic applications’. PhD thesis, University of Notre Dame, 2005.
    53. 53)
      • 16. Cowburn, R., Welland, M.: ‘Room temperature magnetic quantum cellular automata’, Science, 2000, 287, pp. 14661468, doi: 10.1126/science.287.5457.1466.
    54. 54)
      • 40. Craig, S., Lent, P., Douglas, T.: ‘A device architecture for computing with quantum dots’, Proc. IEEE, 1997, 85, (4), pp. 541557, doi: 10.1109/5.573740.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1116
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address