http://iet.metastore.ingenta.com
1887

Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology

Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, the authors present a hardware design of fast multiplierless forward binary discrete cosine transform (BinDCT) based on quantum-dot cellular automata (QCA) technology. This new technology offers several features such as: small size, ultralow power consumption, and can operate at 1 THz. The simulation results in QCA Designer software confirm that the proposed circuit works well and can be used as a high-performance design in QCA technology. The analysis obtained from the implementation of QCA BinDCT indicates that the proposed architecture is superior to the existing based on classic metal-oxide (complementary metal-oxide semiconductor technology) technology. Here, the authors are going to introduce highly BinDCT module scaled with ultra-low power consuming. The proposed circuit requires 50% fewer power consuming compared to previous existing designs. The proposed architecture can attain a throughput of 800 mega pixel per second (Mpps). To design and verify the proposed architecture, QCADesigner tool and QCAPro tool are, respectively, employed for synthesis and power consumption estimation. Since the works in the field of QCA logic image processing have only started to bloom, the proposed contribution will engender a new thread of research in the field of real-time image and video treatment.

References

    1. 1)
      • 1. Antonino, T., Matteo, M., Gianluca, P., et al: ‘Pipelined fast 2D-DCT accelerator for FPGA-based SoCs’. IEEE Computer Society Annual Symp. on ISVLSI ‘07, 9–11 March 2007, doi: 10.1109/ISVLSI.2007.13.
    2. 2)
      • 2. Jianhao, M., Yujen, J., Shih-Fu, C.: ‘Scene change detection in a MPEG compressed video sequence’. Proc. IST/SPIE Symp., February 1995, vol. 2419, pp. 112.
    3. 3)
      • 3. Primechaev, S., Frolov, A., Simak, B.: ‘Scene change detection using DCT features in transform domain video indexing’. 14th Int. Workshop Systems, Signals and Image Processing, 2007 and 6th EURASIP Conf. Focused on Speech and Image Processing, Multimedia Communications and Services, 2007, pp. 369372, doi: 10.1109/IWSSIP.2007.4381118.
    4. 4)
      • 4. Ariki, Y, Saito, Y.: ‘Extraction of TV news articles based on scene extraction of TVcut detection using DCT clustering’. Int. Conf. on Image Processing, 1996. Proc., 1996, vol. 3, pp. 847850, doi: 10.1109/ICIP.1996.560881.
    5. 5)
      • 5. Leszczuk, M., Duplaga, M.: ‘Algorithm for video summarization of bronchoscopy procedures’, Krakow-Polonia BioMedical Engineering On Line, 2011, 110, (10), pp. 117.
    6. 6)
      • 6. Kumar, A., Bhandari, K., Padhy, P.: ‘Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing’, IET Signal Process., 2012, 6, (7), pp. 617625, doi: 10.1049/iet-spr.2011.0298.
    7. 7)
      • 7. Venkata, B., Venkateswarlu, C.: ‘Design of low power 2-D DCT architecture using reconfigurable architecture’, IOSR J Electron. Commun. Eng., 2012, 3, pp. 2025, ISSN: 2278-2834.
    8. 8)
      • 8. Murphy, C., Harvey, M.: ‘Reconfigurable hardware implementation of BinDCT’, Electron. Lett., 2002, 38, (18), pp. 10121013, doi: 10.1049/el:20020711.
    9. 9)
      • 9. Liang, J., Tran, T.: ‘Fast multiplierless approximations of the DCT with the lifting scheme’, IEEE Trans. Signal Process., 2001, 49, pp. 30323044, doi: 10.1109/78.969511.
    10. 10)
      • 10. Cham, W.: ‘Development of integer cosine transforms by the principle of dyadic symmetry’, IEEE Proc. I – Commun. Speech Vis., 1989, 136, pp. 276282, doi: 10.1109/78.969511.
    11. 11)
      • 11. Agrawal, P., Ghosh, B.: ‘Innovative design methodologies in quantum dot cellular automata’, Int. J. Circuit Theory Appl., 2015, 43, (2), pp. 253262, doi: 10.1002/cta.1936.
    12. 12)
      • 12. Mo, L., Lent, S.: ‘High-speed metallic quantum-dot cellular automata’. Proc. 3rd IEEE Conf. Nanotechnol. (IEEE-NANO), August 2003, vol. 2, pp. 465468, doi: 10.1109/NANO.2003.1230946.
    13. 13)
      • 13. Imre, A.: ‘Experimental study of nanomagnets for magnetic quantum-dot cellular automata (MQCA) logic applications’. PhD thesis, University of Notre Dame, 2005.
    14. 14)
      • 14. Pulimeno, A., Graziano, M., Sanginario, A., et al: ‘Bis-ferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault tolerance’, IEEE Trans. Nanotechnol., 2013, 12, (4), pp. 498507, doi: 10.1109/TNANO.2013.2261824.
    15. 15)
      • 15. Lent, C.S., Isaksen, B., Lieberman, M.: ‘Molecular quantum-dot cellular automata’, J. Am. Chemical Soc., 2003, 125, pp. 10561063, doi: 10.1021/ja026856g.
    16. 16)
      • 16. Cowburn, R., Welland, M.: ‘Room temperature magnetic quantum cellular automata’, Science, 2000, 287, pp. 14661468, doi: 10.1126/science.287.5457.1466.
    17. 17)
      • 17. Amlani, I., Orlov, A., Toth, G., et al: ‘Digital logic gate using quantum-dot cellular automata’, Science, 1999, 284, pp. 289291, doi: 10.1126/science.284.5412.289.
    18. 18)
      • 18. Zhang, R., Gupta, P., Jha, N.K.: ‘Synthesis of majority and minority networks and its applications to QCA, TPL and SET based nanotechnologies’. 18th Int. Conf. on VLSI Design, 2005, pp. 229234, doi: 10.1109/ICVD.2005.157.
    19. 19)
      • 19. Shaahin, A., Soheil, S., Samira, S., et alDesign and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata’, Microelectron. J., 2015, 46, pp. 4351, doi: 10.1016/j.mejo.2014.10.003.
    20. 20)
      • 20. Chougule, P., Sen, B., Dongale, T.: ‘Realization of processing In-memory computing architecture using quantum dot cellular automata’, Microprocess. Microsyst., 2017, 52, pp. 4958, doi 10.1016/j.micpro.2017.04.022.
    21. 21)
      • 21. Kianpour, M., Nadooshan, R.S.: ‘A novel quantum-dot cellular automata X-bit x 32-bit SRAM’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (3), pp. 827836.
    22. 22)
      • 22. Cho, H., Swartzlander, E.: ‘Modular design of conditional sum adders using quantum-dot cellular automata’. Sixth IEEE Conf. on Nanotechnology, 2006, IEEE-NANO, 2006, pp. 363366, doi: 10.1109/NANO.2006.247652.
    23. 23)
      • 23. Mostafa, A., Kavehie, O., Navi, K.: ‘A novel design for quantum-dot cellular automata cells and full adders’, arXiv preprint arXiv:1204.2048, 2012, doi: 10.3923/jas.2007.3460.3468.
    24. 24)
      • 24. Heumpil, C., Swartzlander, E.: ‘Serial parallel multiplier design in quantum-dot cellular automata’. 18th IEEE Symp. on Computer Arithmetic, 2007 – ARITH'07, 2007, pp. 715, doi: 10.1109/ARITH.2007.32.
    25. 25)
      • 25. Heumpil, C., Swartzlander, E.: ‘Adder designs and analyses for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2007, 6, pp. 374383, doi: 10.1109/TNANO.2007.894839.
    26. 26)
      • 26. Chudasama, A., Sasamal, N.: ‘Implementation of 4 × 4 vedic multiplier using carry save adder in quantum-dot cellular automata’. IEEE, 2016 Int. Conf. on Communication and Signal Processing (ICCSP), 6–8 April 2016, doi: 10.1109/ICCSP.2016.7754355.
    27. 27)
      • 27. Heumpil, C., Swartzlander, E.: ‘Adder and multiplier design in quantum-dot cellular automata’, IEEE Trans. Comput., 2009, 58, (6), pp. 721727, doi: 10.1109/TC.2009.21.
    28. 28)
      • 28. Moein, K., Reza, S.N.: ‘Novel 8-bit reversible full adder/subtractor using a QCA’, J. Comput. Electron., 2017, 16, (2), pp. 459472.
    29. 29)
      • 29. Reshi, I., Banday, T.: ‘Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata’. 2016 3rd Int. Conf. on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS), 2016, pp. 8994, doi: 10.1109/EMS.2015.74.
    30. 30)
      • 30. Dallaki, H., Mehran, M.: ‘Novel subtractor design based on quantum-dot cellular automata (QCA) nanotechnology’, Int. J. Nanosci. Nanotechnol., 2015, 11, pp. 257262.
    31. 31)
      • 31. Moein, K., Reza, S., Keivan, N.: ‘A novel design of 8-bit adder/subtractor by quantum-dot cellular automata’, J. Comput. Syst. Sci., 2014, 80, pp. 14041414, doi: 10.1016/j.jcss.2014.04.012.
    32. 32)
      • 32. Bibhash, S., Mrinal, G., Samik, S.: ‘Design of sequential circuits in multilayer QCA structure’. 2013 Int. Symp. on Electronic System Design (ISED), 10–12 December 2013, doi: 10.1016/j.jcss.2014.04.012.
    33. 33)
      • 33. Moein, K., Reza, S.N.: ‘A novel modular decoder implementation in quantum-dot cellular automata (QCA)’. Int. Conf. on Nanoscience, Technology and Societal Implications (NSTSI), 2011, pp. 15, doi: 10.1109/NSTSI.2011.6111999.
    34. 34)
      • 34. Mohamed, A., Marco, V., Mariagrazia, G.: ‘Quantum dot cellular automata check node implementation for LDPC decoders’, IEEE Trans. Nanotechnol., 2013, 12, (3), pp. 368377, doi: 10.1109/TNANO.2013.225142.
    35. 35)
      • 35. Tougaw, P.D., Lent, C.S.: ‘Logical devices implemented using quantum cellular automata’, J. Appl. Phys., 1994, 75, pp. 18181825.
    36. 36)
      • 36. Vamsi, V., Marco, O., Fabrizio, L.: ‘Two-dimensional schemes for clocking/timing of qca circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (1), pp. 3444, doi: 10.1109/TCAD.2007.907020.
    37. 37)
      • 37. Angizi, S., Alkaldy, E., Bagherzadeh, N., et al: ‘Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata’, J. Low Power Electron., 2014, 10, pp. 259271. Available at http://dx.doi.org/ 10.1166/jolpe.2014.1320.
    38. 38)
      • 38. Ahmed, M., Ahmed, Y., Yasser, F., et alPerformance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)’, Circuits Syst., 2013, 4, pp. 147156, doi: 10.4236/cs.2013.42020.
    39. 39)
      • 39. Ali, N.B., Sajjad, W., Nazir, H., et al: ‘A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis’, Alexandria Eng. J., 2017, doi:10.1016/j.aej.2017.01.022.
    40. 40)
      • 40. Craig, S., Lent, P., Douglas, T.: ‘A device architecture for computing with quantum dots’, Proc. IEEE, 1997, 85, (4), pp. 541557, doi: 10.1109/5.573740.
    41. 41)
      • 41. Peer, Z.A., Firdous, A., Hilal, A.K.: ‘A new F-shaped XOR gate and its implementations as novel adder circuits based quantum-dot cellular automata (QCA)’, J. Comput. Eng., 2014, 16, (3), Ver. I, pp. 110117, doi: 10.9790/0661-1631110117.
    42. 42)
      • 42. Rumi, Z., Walus, K., Wei, W.: ‘A method of majority logic reduction for quantum cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, (4), pp. 443450, doi: 10.1109/TNANO.2004.834177.
    43. 43)
      • 43. Sara, H., Mohammad, T., Keivan, N.: ‘An efficient quantum-dot cellular automata full-adder’, Sci. Res. Essays, 2012, 7, (2), pp. 177189, doi: 10.1016/j.mejo.2016.02.004.
    44. 44)
      • 44. Mardiris, V., Karafyllidis, I.: ‘Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers’, Int. J. Circuit Theory Appl., 2010, 38, pp. 771785.
    45. 45)
      • 45. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘Two-dimensional schemes for clocking/timing of QCA circuits’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2008, 27, (1), pp. 3444.
    46. 46)
      • 46. Bibhash, S., Anirban, N., Asmit, D.: ‘Multilayer design of QCA multiplexer’. Proc. of the IEEE India Conf. (INDICON), Mumbay, India, 2013, doi:10.1109/INDCON.2013.6725909.
    47. 47)
      • 47. Yang, X., Cai, L., Zhao, X.: ‘Low power dual-edge triggered flip-flop structure in quantum dot cellular automata’, Electron. Lett., 2010, 46, pp. 825826, doi: 10.1049/el.2010.1090.
    48. 48)
      • 48. Anoop, V., Konrad, W., Vassil, S.D., et al: ‘Quantum-dot cellular automata of flip-flops’. ATIPS Laboratory, NW, Calgary, Alberta, Canada, 2003.
    49. 49)
      • 49. Tougaw, P.D., Craig, S.: ‘Dynamic behavior of quantum cellular automata’, J. Appl. Phys., 1996, 80, p. 4722, doi:10.1063/1.363455.
    50. 50)
      • 50. Tamoghna, P., Debashis, D., Tanay, C.: ‘Universal shift register implementation using quantum dot cellular automata’, Ain Shams Eng. J., 2016.
    51. 51)
      • 51. Vikramkumar, P., Sridharan, K.: ‘Efficient design of a hybrid adder in quantum dot cellular automata’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (9), pp. 15351548, doi: 10.1109/TVLSI.2010.2054120.
    52. 52)
      • 52. Uma, S.P., Arjuna, M., Renato, J.C.: ‘Improved 8-point approximate DCT for image and video compression requiring only 14 additions’, IEEE Trans. Circuits Syst. I, 2014, 61, pp. 17271740, doi: 10.1109/TCSI.2013.2295022.
    53. 53)
      • 53. Vaithiyanathan, D., Seshasayanan, R.: ‘Area and power efficient DCT architecture for image compression’, EURASIP J. Adv. Signal Process., 2014, doi: 10.1186/1687-6180-2014-180.
    54. 54)
      • 54. Daniel, L., Marios, P.: ‘A framework for selfreconfigurable DCTs based on multiobjective optimization of the power-performance-accuracy space’. 2012 7th Int. Work on Reconfigurable Commun Syst (ReCoSoC), 2012, p. 1, doi:10.1109/ReCoSoC.2012.6322903.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1116
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address