http://iet.metastore.ingenta.com
1887

Image segmentation fusion using weakly supervised trace-norm multi-task learning method

Image segmentation fusion using weakly supervised trace-norm multi-task learning method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a new method to fuse multiple segmentations generated by different methods or same methods with different parameters. The proposed method has several contributions. First, they convert the image segmentation fusion problem into a weakly supervised learning problem. Thus, the information of superpixels can be used to guide the fusion process. Second, they treat the multiple segmentations as multiple closely related tasks and utilise multi-task learning method to evaluate the reliability of the segmentations. Third, they design a strategy to ensemble the evaluated segmentation maps to obtain the final segmentation. The experiment on the benchmark dataset MSRC demonstrates the superior performance of the proposed method on image foreground and background segmentations.

References

    1. 1)
      • 1. Boykov, Y.Y., Jolly, M.-P.: ‘Interactive graph cuts for optimal boundary & region segmentation of objects in Nd images’. Proc. Int. Conf. Int. Conf. Computer Vision, 2001, pp. 105112.
    2. 2)
      • 2. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905.
    3. 3)
      • 3. Cour, T., Benezit, F., Shi, J.: ‘Spectral segmentation with multiscale graph decomposition’. Proc. Int. Conf. Computer Vision and Pattern Recognition, 2005, pp. 11241131.
    4. 4)
      • 4. Ray, S., Turi, R.H.: ‘Determination of number of clusters in K-means clustering and application in colour image segmentation’. Proc. Int. Conf. Advances in Pattern Recognition and Digital Techniques, 1999, pp. 137143.
    5. 5)
      • 5. Comaniciu, D., Meer, P.: ‘Mean shift: a robust approach toward feature space analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 603619.
    6. 6)
      • 6. Gupta, L., Sortrakul, T.: ‘A Gaussian-mixture-based image segmentation algorithm’, Pattern Recognit., 1998, 31, (3), pp. 315325.
    7. 7)
      • 7. Senthilkumaran, N., Rajesh, R.: ‘Edge detection techniques for image segmentation – a survey of soft computing approaches’, Int. J. Recent Trends Eng., 2009, 1, (2), pp. 250254.
    8. 8)
      • 8. Konishi, S., Yuille, A.L., Coughlan, J.M., et al: ‘Statistical edge detection: learning and evaluating edge cues’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (1), pp. 5774.
    9. 9)
      • 9. Kim, H., Thiagarajan, J.J., Bremer, P.-T.: ‘Image segmentation using consensus from hierarchical segmentation ensembles’. 2014 IEEE Int. Conf. Proc. Int. Conf. Image Processing (ICIP), 2014, pp. 32723276.
    10. 10)
      • 10. Ge, Q., Lobaton, E.: ‘Consensus-based image segmentation via topological persistence’. Proc. Int. Conf. Computer Vision and Pattern Recognition Workshops, 2016, pp. 95102.
    11. 11)
      • 11. Franek, L., Abdala, D.D., Vega-Pons, S., et al: ‘Image segmentation fusion using general ensemble clustering methods’. Proc. Int. Conf. Asian Conf. Computer Vision, 2010, pp. 373384.
    12. 12)
      • 12. Alush, A., Goldberger, J.: ‘Ensemble segmentation using efficient integer linear programming’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (10), pp. 19661977.
    13. 13)
      • 13. Ozay, M., Vural, F.T.Y., Kulkarni, S.R., et al: ‘Fusion of image segmentation algorithms using consensus clustering’. 2013 20th IEEE Int. Conf. Proc. Int. Conf. Image Processing (ICIP), 2013, pp. 40494053.
    14. 14)
      • 14. Nielsen, F., Nock, R.: ‘Consensus region merging for image segmentation’. 2013 Second IAPR Asian Conf. Proc. Int. Conf. Pattern Recognition (ACPR), 2013, pp. 325329.
    15. 15)
      • 15. Khelifi, L., Mignotte, M.: ‘A novel fusion approach based on the global consistency criterion to fusing multiple segmentations’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (9), pp. 24892502.
    16. 16)
      • 16. Khelifi, L., Mignotte, M.: ‘A multi-objective decision making approach for solving the image segmentation fusion problem’, IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc., 2017, 26, (8), p. 3831.
    17. 17)
      • 17. Singh, V., Mukherjee, L., Peng, J., et al: ‘Ensemble clustering using semidefinite programming with applications’, Mach. Learn., 2010, 79, (1), pp. 177200.
    18. 18)
      • 18. Rao, S.R., Mobahi, H., Yang, A.Y., et al: ‘Natural image segmentation with adaptive texture and boundary encoding’. Proc. Int. Conf. Asian Conf. Computer Vision, 2009, pp. 135146.
    19. 19)
      • 19. Lee, C., Jang, W.-D., Sim, J.-Y., et al: ‘Multiple random walkers and their application to image cosegmentation’. Proc. Int. Conf. Computer Vision and Pattern Recognition, 2015, pp. 38373845.
    20. 20)
      • 20. Fu, H., Xu, D., Zhang, B., et al: ‘Object-based multiple foreground video co-segmentation via multi-state selection graph’, IEEE Trans. Image Process., 2015, 24, (11), pp. 34153424.
    21. 21)
      • 21. Wang, Q., Yuan, Y., Yan, P., et al: ‘Saliency detection by multiple-instance learning’, IEEE Trans. Cybern., 2013, 43, (2), pp. 660672.
    22. 22)
      • 22. Wang, Q., Yuan, Y., Yan, P.: ‘Visual saliency by selective contrast’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (7), pp. 11501155.
    23. 23)
      • 23. Shelhamer, E., Long, J., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 640651.
    24. 24)
      • 24. Lin, D., Dai, J., Jia, J., et al: ‘Scribblesup: scribble-supervised convolutional networks for semantic segmentation’. Proc. Int. Conf. Computer Vision and Pattern Recognition, 2016, pp. 31593167.
    25. 25)
      • 25. Lin, G., Shen, C., Van, D.H.A., et al: ‘Exploring context with deep structured models for semantic segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, (99), p. 1, doi: 10.1109/TPAMI.2017.2708714.
    26. 26)
      • 26. Liang, X., Zhu, L., Huang, D.-S.: ‘Optimization of gene set annotations using robust trace-norm multitask learning’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2017, doi: 10.1109/TCBB.2017.2690427.
    27. 27)
      • 27. Liu, J., Ji, S., Ye, J.: ‘Multi-task feature learning via efficient L 2, 1-norm minimization’. Proc. Int. Conf. Proc. 25 Conf. Uncertainty in Artificial Intelligence, 2009, pp. 339348.
    28. 28)
      • 28. Pong, T.K., Tseng, P., Ji, S., et al: ‘Trace norm regularization: reformulations, algorithms, and multi-task learning’, SIAM J. Optim., 2010, 20, (6), pp. 34653489.
    29. 29)
      • 29. Jacob, L., Vert, J.-P., Bach, F.R.: ‘Clustered multi-task learning: a convex formulation’. Proc. Int. Conf. Advances in Neural Information Processing Systems, 2009, pp. 745752.
    30. 30)
      • 30. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), pp. 22742282.
    31. 31)
      • 31. Jiang, H., Wang, J., Yuan, Z., et al: ‘Salient object detection: a discriminative regional feature integration approach’. Proc. Int. Conf. Computer Vision and Pattern Recognition, 2013, pp. 20832090.
    32. 32)
      • 32. Ji, S., Ye, J.: ‘An accelerated gradient method for trace norm minimization’. Proc. Int. Conf. Machine Learning, 2009, pp. 457464.
    33. 33)
      • 33. Zhang, Q., Zhou, J., Wang, Y., et al: ‘Image cosegmentation via multi-task learning’. Proc. Int. Conf. BMVC, 2014.
    34. 34)
      • 34. Rubinstein, M., Joulin, A., Kopf, J., et al: ‘Unsupervised joint object discovery and segmentation in Internet images’. Proc. Int. Conf. Computer Vision and Pattern Recognition, 2013, pp. 19391946.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.1061
Loading

Related content

content/journals/10.1049/iet-ipr.2017.1061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address