Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Pansharpening scheme using filtering in two-dimensional discrete fractional Fourier transform

The aim of the pansharpening scheme is to improve the spatial information of multispectral images using the panchromatic (PAN) image. In this study, a novel pansharpening scheme based on two-dimensional discrete fractional Fourier transform (2D-DFRFT) is proposed. In the proposed scheme, PAN and intensity images are transformed using 2D-DFRFT and filtered by highpass filters, respectively. The filtered images are inverse transformed and further used to generate the pansharpened image using appropriate fusion rule. The additional degree of freedom in terms of its angle parameters associated with the 2D-DFRFT is exploited for obtaining better results in the proposed pansharpening scheme. Simulation results of the proposed technique carried out in MATLAB are presented for IKONOS and GeoEye-1 satellite images and compared with existing fusion methods in terms of both visual observation and quality metrics. It is seen that the proposed pansharpening scheme has improved spectral and spatial resolution as compared to the existing schemes.

References

    1. 1)
      • 29. Zayed, A.I.: ‘Advances in shannon's sampling theory’ (CRC Press, Florida, 1993).
    2. 2)
      • 12. Nunez, J., Otazu, X., Fors, O., et al: ‘Multiresolution-based image fusion with additive wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (3), pp. 12041211.
    3. 3)
      • 34. Khan, M.M., Chanussot, J., Condat, L., et al: ‘Indusion: fusion of multispectral and panchromatic images using the induction scaling technique’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (1), pp. 98102.
    4. 4)
      • 15. Mirzapour, F., Ghassemian, H.: ‘Improving hyperspectral image classification by combining spectral, texture, and shape features’, Int. J. Remote Sens., 2015, 36, (4), pp. 10701096.
    5. 5)
      • 6. Rahmani, S., Strait, M., Merkurjev, D., et al: ‘An adaptive ihs pan-sharpening method’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 746750.
    6. 6)
      • 46. Yuhas, R.H., Goetz, A.F., Boardman, J.W.: ‘Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm’, 1992.
    7. 7)
      • 5. Shah, V.P., Younan, N.H., King, R.L.: ‘An efficient pan-sharpening method via a combined adaptive pca approach and contourlets’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (5), pp. 13231335.
    8. 8)
      • 1. Song, Y., Wu, W., Liu, Z., et al: ‘An adaptive pansharpening method by using weighted least squares filter’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 1822.
    9. 9)
      • 4. Chen, C., Li, Y., Liu, W., et al: ‘Sirf: simultaneous satellite image registration and fusion in a unified framework’, IEEE Trans. Image Process., 2015, 24, (11), pp. 42134224.
    10. 10)
      • 7. Laben, C.A., Brower, B.V.: ‘Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening’. US Patent, 6,011,875, January 4 2000.
    11. 11)
      • 40. Vivone, G., Alparone, L., Chanussot, J., et al: ‘A critical comparison among pansharpening algorithms’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (5), pp. 25652586.
    12. 12)
      • 17. Ghahremani, M., Ghassemian, H.: ‘A compressed-sensing-based pansharpening method for spectral distortion reduction’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (4), pp. 21942206.
    13. 13)
      • 36. Pei, S.-C., Yeh, M.-H.: ‘Two dimensional discrete fractional Fourier transform’, Signal Process., 1998, 67, (1), pp. 99108.
    14. 14)
      • 32. Shahdoosti, H.R., Ghassemian, H.: ‘Fusion of ms and pan images preserving spectral quality’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (3), pp. 611615.
    15. 15)
      • 2. Zhang, Y.: ‘Understanding image fusion’, Photogramm. Eng. Remote Sens., 2004, 70, (6), pp. 657661.
    16. 16)
      • 31. Sharma, K.K., Joshi, S.D.: ‘Image registration using fractional Fourier transform’. APCCAS 2006-2006 IEEE Asia Pacific Conf. on Circuits and Systems. IEEE, 2006, pp. 470473.
    17. 17)
      • 44. Wald, L.: ‘Data fusion: definitions and architectures: fusion of images of different spatial resolutions’ (Presses des MINES, 2002), pp. 8184.
    18. 18)
      • 47. Alparone, L., Aiazzi, B., Baronti, S., et al: ‘Multispectral and panchromatic data fusion assessment without reference’, Photogramm. Eng. Remote Sens., 2008, 74, (2), pp. 193200.
    19. 19)
      • 9. Saxena, N., Sharma, K.K.: ‘A novel pansharpening approach using hilbert vibration decomposition’, IET Image Process., doi:10.1049/iet-ipr.2017.0133.
    20. 20)
      • 35. Ranchin, T., Wald, L.: ‘Fusion of high spatial and spectral resolution images: the arsis concept and its implementation’, Photogramm. Eng. Remote Sens., 2000, 66, (1), pp. 4961.
    21. 21)
      • 14. Guo, M., Zhang, H., Li, J., et al: ‘An online coupled dictionary learning approach for remote sensing image fusion’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (4), pp. 12841294.
    22. 22)
      • 22. Kutay, A., Ozaktas, H.M., Ankan, O., et al: ‘Optimal filtering in fractional Fourier domains’, IEEE Trans. Signal Process., 1997, 45, (5), pp. 11291143.
    23. 23)
      • 30. Sharma, K.: ‘Approximate signal reconstruction using nonuniform samples in fractional Fourier and linear canonical transform domains’, IEEE Trans. Signal Process., 2009, 57, (11), pp. 45734578.
    24. 24)
      • 28. Sharma, K.K., Joshi, S.D.: ‘Time delay estimation using fractional Fourier transform’, Signal Process., 2007, 87, (5), pp. 853865.
    25. 25)
      • 23. Miah, K.H., Potter, D.K.: ‘Geophysical signal parameterization and filtering using the fractional Fourier transform’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (3), pp. 845852.
    26. 26)
      • 45. Wang, Z., Bovik, A.C.: ‘A universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    27. 27)
      • 21. Ozaktas, H.M., Barshan, B., Mendlovic, D.: ‘Convolution and filtering in fractional Fourier domains’, Opt. Rev., 1994, 1, (1), pp. 1516.
    28. 28)
      • 11. Moonon, A.-U., Hu, J., Li, S.: ‘Remote sensing image fusion method based on nonsubsampled shearlet transform and sparse representation’, Sensing Imaging, 2015, 16, (1), pp. 23.
    29. 29)
      • 41. Vivone, G., Restaino, R., Dalla Mura, M., et al: ‘Contrast and error-based fusion schemes for multispectral image pansharpening’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (5), pp. 930934.
    30. 30)
      • 20. Lu, W., Xie, J., Wang, H., et al: ‘Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform’, SpringerPlus, 2016, 5, (1), pp. 1177.
    31. 31)
      • 19. Ling, Y., Ehlers, M., Usery, E.L., et al: ‘Fft-enhanced ihs transform method for fusing high-resolution satellite images’, ISPRS J. Photogramm. Remote Sens., 2007, 61, (6), pp. 381392.
    32. 32)
      • 25. Ozaktas, H.M., Erkaya, N., Kutay, M.A.: ‘Effect of fractional Fourier transformation on time-frequency distributions belonging to the cohen class’, IEEE Signal Process. Lett., 1996, 3, (2), pp. 4041.
    33. 33)
      • 10. Czaja, W., Doster, T., Murphy, J.M.: ‘Wavelet packet mixing for image fusion and pan-sharpening’. SPIE Defense + Security, 2014, p. 908 803.
    34. 34)
      • 26. Ozaktas, H.M., Mendlovic, D.: ‘Fractional Fourier transforms and their optical implementation. ii’, JOSA A, 1993, 10, (12), pp. 25222531.
    35. 35)
      • 27. Pei, S.-C., Ding, J.-J.: ‘Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (7), pp. 15991611.
    36. 36)
      • 24. Candan, Ç, Kutay, M.A., Ozaktas, H.M.: ‘The discrete fractional Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (5), pp. 13291337.
    37. 37)
      • 18. Baronti, S., Aiazzi, B., Selva, M., et al: ‘A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery’, IEEE J. Sel. Top. Signal Process., 2011, 5, (3), pp. 446453.
    38. 38)
      • 8. Sides, S.C., Anderson, J.A.: ‘Comparison of three different methods to merge multiresolution and multispectral data- landsat tm and spot panchromatic’, Photogramm. Eng. Remote Sens., 1991, 57, (3), pp. 295303.
    39. 39)
      • 39. Pei, S.-C., Yeh, M.-H.: ‘Improved discrete fractional Fourier transform’, Opt. Lett., 1997, 22, (14), pp. 10471049.
    40. 40)
      • 43. Aiazzi, B., Baronti, S., Selva, M.: ‘Improving component substitution pansharpening through multivariate regression of ms + pan data’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (10), pp. 32303239.
    41. 41)
      • 16. Golipour, M., Ghassemian, H., Mirzapour, F.: ‘Integrating hierarchical segmentation maps with mrf prior for classification of hyperspectral images in a Bayesian framework’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (2), pp. 805816.
    42. 42)
      • 33. Lee, J., Lee, C.: ‘Fast and efficient panchromatic sharpening’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (1), pp. 155163.
    43. 43)
      • 42. Aiazzi, B., Baronti, S., Selva, M., et al: ‘Bi-cubic interpolation for shift-free pan-sharpening’, ISPRS J. Photogramm. Remote Sens., 2013, 86, pp. 6576.
    44. 44)
      • 37. Narayanan, V.A., Prabhu, K.: ‘The fractional Fourier transform: theory, implementation and error analysis’, Microprocess. Microsyst., 2003, 27, (10), pp. 511521.
    45. 45)
      • 38. Pei, S.-C., Yeh, M.-H.: ‘Discrete fractional Fourier transform’. Circuits and Systems, 1996. ISCAS'96, Connecting the World, 1996 IEEE Int. Symp. on IEEE, vol.2, 1996, pp. 536539.
    46. 46)
      • 13. González-Audícana, M., Saleta, J.L., Catalán, R.G., et al: ‘Fusion of multispectral and panchromatic images using improved ihs and pca mergers based on wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (6), pp. 12911299.
    47. 47)
      • 3. Ghassemian, H.: ‘A review of remote sensing image fusion methods’, Inf. Fusion, 2016, 32, pp. 7589.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0961
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0961
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address