http://iet.metastore.ingenta.com
1887

Pansharpening scheme using filtering in two-dimensional discrete fractional Fourier transform

Pansharpening scheme using filtering in two-dimensional discrete fractional Fourier transform

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The aim of the pansharpening scheme is to improve the spatial information of multispectral images using the panchromatic (PAN) image. In this study, a novel pansharpening scheme based on two-dimensional discrete fractional Fourier transform (2D-DFRFT) is proposed. In the proposed scheme, PAN and intensity images are transformed using 2D-DFRFT and filtered by highpass filters, respectively. The filtered images are inverse transformed and further used to generate the pansharpened image using appropriate fusion rule. The additional degree of freedom in terms of its angle parameters associated with the 2D-DFRFT is exploited for obtaining better results in the proposed pansharpening scheme. Simulation results of the proposed technique carried out in MATLAB are presented for IKONOS and GeoEye-1 satellite images and compared with existing fusion methods in terms of both visual observation and quality metrics. It is seen that the proposed pansharpening scheme has improved spectral and spatial resolution as compared to the existing schemes.

References

    1. 1)
      • 1. Song, Y., Wu, W., Liu, Z., et al: ‘An adaptive pansharpening method by using weighted least squares filter’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (1), pp. 1822.
    2. 2)
      • 2. Zhang, Y.: ‘Understanding image fusion’, Photogramm. Eng. Remote Sens., 2004, 70, (6), pp. 657661.
    3. 3)
      • 3. Ghassemian, H.: ‘A review of remote sensing image fusion methods’, Inf. Fusion, 2016, 32, pp. 7589.
    4. 4)
      • 4. Chen, C., Li, Y., Liu, W., et al: ‘Sirf: simultaneous satellite image registration and fusion in a unified framework’, IEEE Trans. Image Process., 2015, 24, (11), pp. 42134224.
    5. 5)
      • 5. Shah, V.P., Younan, N.H., King, R.L.: ‘An efficient pan-sharpening method via a combined adaptive pca approach and contourlets’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (5), pp. 13231335.
    6. 6)
      • 6. Rahmani, S., Strait, M., Merkurjev, D., et al: ‘An adaptive ihs pan-sharpening method’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 746750.
    7. 7)
      • 7. Laben, C.A., Brower, B.V.: ‘Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening’. US Patent, 6,011,875, January 4 2000.
    8. 8)
      • 8. Sides, S.C., Anderson, J.A.: ‘Comparison of three different methods to merge multiresolution and multispectral data- landsat tm and spot panchromatic’, Photogramm. Eng. Remote Sens., 1991, 57, (3), pp. 295303.
    9. 9)
      • 9. Saxena, N., Sharma, K.K.: ‘A novel pansharpening approach using hilbert vibration decomposition’, IET Image Process., doi:10.1049/iet-ipr.2017.0133.
    10. 10)
      • 10. Czaja, W., Doster, T., Murphy, J.M.: ‘Wavelet packet mixing for image fusion and pan-sharpening’. SPIE Defense + Security, 2014, p. 908 803.
    11. 11)
      • 11. Moonon, A.-U., Hu, J., Li, S.: ‘Remote sensing image fusion method based on nonsubsampled shearlet transform and sparse representation’, Sensing Imaging, 2015, 16, (1), pp. 23.
    12. 12)
      • 12. Nunez, J., Otazu, X., Fors, O., et al: ‘Multiresolution-based image fusion with additive wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (3), pp. 12041211.
    13. 13)
      • 13. González-Audícana, M., Saleta, J.L., Catalán, R.G., et al: ‘Fusion of multispectral and panchromatic images using improved ihs and pca mergers based on wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (6), pp. 12911299.
    14. 14)
      • 14. Guo, M., Zhang, H., Li, J., et al: ‘An online coupled dictionary learning approach for remote sensing image fusion’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (4), pp. 12841294.
    15. 15)
      • 15. Mirzapour, F., Ghassemian, H.: ‘Improving hyperspectral image classification by combining spectral, texture, and shape features’, Int. J. Remote Sens., 2015, 36, (4), pp. 10701096.
    16. 16)
      • 16. Golipour, M., Ghassemian, H., Mirzapour, F.: ‘Integrating hierarchical segmentation maps with mrf prior for classification of hyperspectral images in a Bayesian framework’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (2), pp. 805816.
    17. 17)
      • 17. Ghahremani, M., Ghassemian, H.: ‘A compressed-sensing-based pansharpening method for spectral distortion reduction’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (4), pp. 21942206.
    18. 18)
      • 18. Baronti, S., Aiazzi, B., Selva, M., et al: ‘A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery’, IEEE J. Sel. Top. Signal Process., 2011, 5, (3), pp. 446453.
    19. 19)
      • 19. Ling, Y., Ehlers, M., Usery, E.L., et al: ‘Fft-enhanced ihs transform method for fusing high-resolution satellite images’, ISPRS J. Photogramm. Remote Sens., 2007, 61, (6), pp. 381392.
    20. 20)
      • 20. Lu, W., Xie, J., Wang, H., et al: ‘Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform’, SpringerPlus, 2016, 5, (1), pp. 1177.
    21. 21)
      • 21. Ozaktas, H.M., Barshan, B., Mendlovic, D.: ‘Convolution and filtering in fractional Fourier domains’, Opt. Rev., 1994, 1, (1), pp. 1516.
    22. 22)
      • 22. Kutay, A., Ozaktas, H.M., Ankan, O., et al: ‘Optimal filtering in fractional Fourier domains’, IEEE Trans. Signal Process., 1997, 45, (5), pp. 11291143.
    23. 23)
      • 23. Miah, K.H., Potter, D.K.: ‘Geophysical signal parameterization and filtering using the fractional Fourier transform’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (3), pp. 845852.
    24. 24)
      • 24. Candan, Ç, Kutay, M.A., Ozaktas, H.M.: ‘The discrete fractional Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (5), pp. 13291337.
    25. 25)
      • 25. Ozaktas, H.M., Erkaya, N., Kutay, M.A.: ‘Effect of fractional Fourier transformation on time-frequency distributions belonging to the cohen class’, IEEE Signal Process. Lett., 1996, 3, (2), pp. 4041.
    26. 26)
      • 26. Ozaktas, H.M., Mendlovic, D.: ‘Fractional Fourier transforms and their optical implementation. ii’, JOSA A, 1993, 10, (12), pp. 25222531.
    27. 27)
      • 27. Pei, S.-C., Ding, J.-J.: ‘Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (7), pp. 15991611.
    28. 28)
      • 28. Sharma, K.K., Joshi, S.D.: ‘Time delay estimation using fractional Fourier transform’, Signal Process., 2007, 87, (5), pp. 853865.
    29. 29)
      • 29. Zayed, A.I.: ‘Advances in shannon's sampling theory’ (CRC Press, Florida, 1993).
    30. 30)
      • 30. Sharma, K.: ‘Approximate signal reconstruction using nonuniform samples in fractional Fourier and linear canonical transform domains’, IEEE Trans. Signal Process., 2009, 57, (11), pp. 45734578.
    31. 31)
      • 31. Sharma, K.K., Joshi, S.D.: ‘Image registration using fractional Fourier transform’. APCCAS 2006-2006 IEEE Asia Pacific Conf. on Circuits and Systems. IEEE, 2006, pp. 470473.
    32. 32)
      • 32. Shahdoosti, H.R., Ghassemian, H.: ‘Fusion of ms and pan images preserving spectral quality’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (3), pp. 611615.
    33. 33)
      • 33. Lee, J., Lee, C.: ‘Fast and efficient panchromatic sharpening’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (1), pp. 155163.
    34. 34)
      • 34. Khan, M.M., Chanussot, J., Condat, L., et al: ‘Indusion: fusion of multispectral and panchromatic images using the induction scaling technique’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (1), pp. 98102.
    35. 35)
      • 35. Ranchin, T., Wald, L.: ‘Fusion of high spatial and spectral resolution images: the arsis concept and its implementation’, Photogramm. Eng. Remote Sens., 2000, 66, (1), pp. 4961.
    36. 36)
      • 36. Pei, S.-C., Yeh, M.-H.: ‘Two dimensional discrete fractional Fourier transform’, Signal Process., 1998, 67, (1), pp. 99108.
    37. 37)
      • 37. Narayanan, V.A., Prabhu, K.: ‘The fractional Fourier transform: theory, implementation and error analysis’, Microprocess. Microsyst., 2003, 27, (10), pp. 511521.
    38. 38)
      • 38. Pei, S.-C., Yeh, M.-H.: ‘Discrete fractional Fourier transform’. Circuits and Systems, 1996. ISCAS'96, Connecting the World, 1996 IEEE Int. Symp. on IEEE, vol.2, 1996, pp. 536539.
    39. 39)
      • 39. Pei, S.-C., Yeh, M.-H.: ‘Improved discrete fractional Fourier transform’, Opt. Lett., 1997, 22, (14), pp. 10471049.
    40. 40)
      • 40. Vivone, G., Alparone, L., Chanussot, J., et al: ‘A critical comparison among pansharpening algorithms’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (5), pp. 25652586.
    41. 41)
      • 41. Vivone, G., Restaino, R., Dalla Mura, M., et al: ‘Contrast and error-based fusion schemes for multispectral image pansharpening’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (5), pp. 930934.
    42. 42)
      • 42. Aiazzi, B., Baronti, S., Selva, M., et al: ‘Bi-cubic interpolation for shift-free pan-sharpening’, ISPRS J. Photogramm. Remote Sens., 2013, 86, pp. 6576.
    43. 43)
      • 43. Aiazzi, B., Baronti, S., Selva, M.: ‘Improving component substitution pansharpening through multivariate regression of ms + pan data’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (10), pp. 32303239.
    44. 44)
      • 44. Wald, L.: ‘Data fusion: definitions and architectures: fusion of images of different spatial resolutions’ (Presses des MINES, 2002), pp. 8184.
    45. 45)
      • 45. Wang, Z., Bovik, A.C.: ‘A universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    46. 46)
      • 46. Yuhas, R.H., Goetz, A.F., Boardman, J.W.: ‘Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm’, 1992.
    47. 47)
      • 47. Alparone, L., Aiazzi, B., Baronti, S., et al: ‘Multispectral and panchromatic data fusion assessment without reference’, Photogramm. Eng. Remote Sens., 2008, 74, (2), pp. 193200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0961
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0961
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address