Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Perceptual video quality metric for compression artefacts: from two-dimensional to omnidirectional

In this study, the perceptual video quality (PVQ) for the vogue 360-degree video with compression artefacts viewed on the visual reality (VR) head-mounted display (HMD) is obtained for the first time by an elaborately designed subjective experiment. The characteristic of the PVQ of omnidirectional (360-degree) video on the VR HMD and PC monitor is then investigated. The PVQ on the HMD is found to be linearly related to the video coding quality (VCQ) on the PC monitor. A quality evaluation model is then proposed based on the mapping formula and a new assessment parameter, where the impact of the video resolution and display device is involved. In this way, the traditional video quality assessment metrics for two-dimensional video can be extended to assess the PVQ of the 360-degree video viewed on the HMD. At last, the video structural similarity metric is taken as an example to predict the input of the proposed model, i.e. the VCQ of the 360-degree video. Experimental results demonstrate that the proposed model can effectively and conveniently solve the challenge of PVQ assessment for the 360-degree video with compression distortions on the HMD.

References

    1. 1)
      • 3. Porikli, F., Bovik, A., Plack, C., et al: ‘Multimedia quality assessment’, IEEE Signal Process. Mag., 2011, 28, (6), pp. 164177.
    2. 2)
      • 17. Zakharchenko, V., Choi, K. P., Park, J. H.: ‘Quality metric for spherical panoramic video’, Proc. SPIE, 2016, 9970, p. 99700C.
    3. 3)
      • 9. Shahid, M., Rossholm, A., Lövström, B., et al: ‘No-reference image and video quality assessment: a classification and review of recent approaches’, EURASIP J. Image Video Process., 2014, 1.
    4. 4)
      • 22. ITU-T P. 910: ‘Subjective video quality assessment methods for multimedia applications’, 2008.
    5. 5)
      • 1. Digital democracy survey: a multi-generational view of consumer technology, media and telecom trends’ (Deloite's Technology, Media and Telecommunications (TMT) Practice), https://www2.deloite.com/content/dam/Deloite/global/Documents/Technology-Media-Telecommunications/gx-tmt-deloite-democracy-survey.pdf, accessed 23 March 2016.
    6. 6)
      • 11. Wang, Z., Bovik, A. C., Sheikh, H. R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    7. 7)
      • 29. Montgomery, D. C., Runger, G. C.: ‘Applied statistics and probability for engineers’ (Wiley-Interscience, New York, NY, 1999).
    8. 8)
      • 20. Vishwanath, B., He, Y., Xiu, X., et al: ‘AHG8: Suggested test methodology for evaluating projection formats for 360 video coding’, http://phenix.int-evry.fr/jvet/doc_end_user/current_document.php?id=2770, accessed 15 October 2016.
    9. 9)
      • 7. Chen, Y., Wu, K., Zhang, Q.: ‘From QoS to QoE: a tutorial on video quality assessment’, IEEE Commun. Surv. Tutor., 2015, 17, (2), pp. 11261165.
    10. 10)
      • 15. Yang, F., Song, J., Wan, S., et al: ‘Content-adaptive packet-layer model for quality assessment of networked video services’, IEEE J. Sel. Top. Signal Process., 2012, 6, (6), pp. 672683.
    11. 11)
      • 14. Yang, F., Wan, S., Xie, Q., et al: ‘No-reference quality assessment for networked video via primary analysis of bit stream’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (11), pp. 15441554.
    12. 12)
      • 30. Wang, Z., Lu, L., Bovik, A. C.: ‘Video quality assessment based on structural distortion measurement’, Signal Process. Image Commun., 2004, 19, (2), pp. 121132.
    13. 13)
      • 28. Kendall, M., Stuart, A.: ‘The advanced theory of statistics’ (Wiley, New York, 1977).
    14. 14)
      • 13. Seshadrinathan, K., Bovik, A. C.: ‘Motion tuned spatio-temporal quality assessment of natural videos’, IEEE Trans. Image Process., 2010, 19, (2), pp. 335350.
    15. 15)
      • 24. Reichl, P., Egger, S., Schatz, R., et al: ‘The logarithmic nature of QoE and the role of the Weber–Fechner law in QoE assessment’. Proc. IEEE ICC, Cape Town, South Africa, May 2010, pp. 15.
    16. 16)
      • 19. http://mathworld.wolfram.com/CylindricalEquidistantProjection.html.
    17. 17)
      • 23. ITU-T P. 913: ‘Methods for the subjective assessment of video quality, audio quality and audiovisual quality of internet video and distribution quality television in any environment’, 2014.
    18. 18)
      • 26. Zinner, T., Hoßfeld, T., Minhas, T.N., et al: ‘Controlled vs. uncontrolled degradations of QoE: the provisioning-delivery hysteresis in case of video’. Proc. New Dimensions in the Assessment and Support of Quality of Experience (QoE) for Multimedia Applications, Tampere, Finland, June 2010.
    19. 19)
      • 6. Liu, T. J., Lin, Y. C., Lin, W., et al: ‘Visual quality assessment: recent developments, coding applications and future trends’, APSIPA Trans. Signal Inf. Process., 2013, 2, (4).
    20. 20)
      • 27. Robin, M., Poulin, M.: ‘Digital television fundamentals’, 2000, pp. 34.
    21. 21)
      • 4. Al-Naji, A., Lee, S. H., Chahl, J.: ‘Quality index evaluation of videos based on fuzzy interface system’, IET Image Process., 2017, 11, (5), pp. 292300.
    22. 22)
      • 5. Yang, F., Wan, S.: ‘Bitstream-based quality assessment for networked video: a review’, IEEE Commun. Mag., 2012, 50, (11), pp. 203209.
    23. 23)
      • 25. Fiedler, M., Hossfeld, T.: ‘Quality of experience-related differential equations and provisioning-delivery hysteresis’. Proc. 21st ITC Specialists Seminar, Miyazaki, Japan, March 2010.
    24. 24)
      • 8. Chikkerur, S., Sundaram, V., Reisslein, M., et al: ‘Objective video quality assessment methods: a classification, review, and performance comparison’, IEEE Trans. Broadcast., 2011, 57, (2), pp. 165182.
    25. 25)
      • 2. The future of consumer VR and its impact on video viewing, 2016–2025’ (The Diffusion Group), http://tdgresearch.com/report/the-future-of-consumer-vr-and-its-impact-on-video-viewing-2016-2025/, assessed 6 January 2016.
    26. 26)
      • 21. Howard, I. P., Rogers, B. J.: ‘Binocular vision and stereopsis’ (Oxford University Press, New York, NY, 1995), pp. 3133.
    27. 27)
      • 16. Yu, M., Lakshman, H., Girod, B.: ‘A framework to evaluate omnidirectional video coding schemes’, 2015 IEEE Int. Symp. on Mixed and Augmented Reality (ISMAR), 2015.
    28. 28)
      • 10. Huynh-Thu, Q., Ghanbari, M.: ‘Scope of validity of PSNR in image/video quality assessment’, Electron. Lett., 2008, 44, (13), pp. 800801.
    29. 29)
      • 18. G.1071 ITU-T RECOMMENDATION.: ‘Opinion model for network planning of video and audio streaming applications’, 2015.
    30. 30)
      • 12. Pinson, M. H., Wolf, S.: ‘A new standardized method for objectively measuring video quality’, IEEE Trans. Broadcast., 2004, 50, (3), pp. 312322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0826
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0826
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address