Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Curvelet-based multiscale denoising using non-local means & guided image filter

This study presents an image denoising technique using multiscale non-local means (NLM) filtering combined with hard thresholding in curvelet domain. The inevitable ringing artefacts in the reconstructed image – due to thresholding – is further processed using a guided image filter for better preservation of local structures like edges, textures and small details. The authors decomposed the image into three different curvelet scales including the approximation and the fine scale. The low-frequency noise in the approximation sub-band and the edges with small textural details in the fine scale are processed independently using a multiscale NLM filter. On the other hand, the hard thresholding in the remaining coarser scale is applied to separate the signal and the noise subspace. Experimental results on both greyscale and colour images indicate that the proposed approach is competitive at lower noise strength with respect to peak signal to noise ratio and structural similarity index measure and excels in performance at higher noise strength compared with several state-of-the-art algorithms.

References

    1. 1)
      • 23. Buades, A., Coll, B., Morel, J.M.: ‘Non-local means denoising’, Image Process. Online, 2011, 1, pp. 208212.
    2. 2)
      • 10. Blu, T., Luisier, F.: ‘The SURE-LET approach to image denoising’, IEEE Trans. Image Process., 2007, 16, (11), pp. 27782786.
    3. 3)
      • 14. Knaus, C., Zwicker, M.: ‘Dual-domain image denoising’. 2013 20th IEEE Int. Conf. on Image Processing (ICIP), 2013, pp. 440444.
    4. 4)
      • 18. Coupé, P., Manjón, J.V., Robles, M., et al: ‘Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising’, IET Image Process., 2012, 6, (5), pp. 558568.
    5. 5)
      • 27. Podpora, M., Korbas, G.P., Kawala-Janik, A.: ‘YUV vs RGB-choosing a color space for human-machine interaction’. Position papers of the 2014 Federated Conf. on Computer Science and Information Systems, 2014, pp. 2934.
    6. 6)
      • 28. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    7. 7)
      • 20. Knaus, C., Zwicker, M.: ‘Progressive image denoising’, IEEE Trans. Image Process., 2014, 23, (7), pp. 31143125.
    8. 8)
      • 9. Pizurica, A., Philips, W.: ‘Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising’, IEEE Trans. Image Process., 2006, 15, (3), pp. 654665.
    9. 9)
      • 13. Zhang, M., Gunturk, B.K.: ‘Multiresolution bilateral filtering for image denoising’, IEEE Trans. Image Process., 2008, 17, (12), pp. 23242333.
    10. 10)
      • 2. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Sixth Int. Conf. on Computer Vision, 1998, pp. 839846.
    11. 11)
      • 15. Ma, J., Plonka, G.: ‘The curvelet transform’, IEEE Signal Process. Mag., 2010, 27, (2), pp. 118133.
    12. 12)
      • 8. Sendur, L., Selesnick, I.W.: ‘Bivariate shrinkage with local variance estimation’, IEEE Signal Process. Lett., 2002, 9, (12), pp. 438441.
    13. 13)
      • 6. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., et al: ‘Wavelet shrinkage: asymptopia?’, J. R. Stat. Soc. B, Methodol., 1995, 57, (2), pp. 301369.
    14. 14)
      • 31. Easley, G., Labate, D., Lim, W.Q.: ‘Sparse directional image representations using the discrete shearlet transform’, Appl. Comput. Harmon. Anal., 2008, 21, (1), pp. 2546.
    15. 15)
      • 11. Dengwen, Z., Wengang, C.: ‘Image denoising with an optimal threshold and neighbouring window’, Pattern Recognit. Lett., 2008, 29, (11), pp. 16941697.
    16. 16)
      • 19. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    17. 17)
      • 4. He, K., Sun, J., Tang, X..: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    18. 18)
      • 26. Luisier, F., Blu, T.: ‘SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding’, IEEE Trans. Image Process., 2008, 17, (4), pp. 482492.
    19. 19)
      • 17. Kumar, B.S.: ‘Image denoising based on non-local means filter and its method noise thresholding’, Signal Image Video Process., 2013, 7, (6), pp. 12111227.
    20. 20)
      • 12. Starck, J.L., Candès, E.J., Donoho, D.L.: ‘The curvelet transform for image denoising’, IEEE Trans. Image Process., 2002, 11, (6), pp. 670684.
    21. 21)
      • 34. Kroon, D.J.: ‘Fast Non-local means 1D, 2D color and 3D’, https://in.mathworks.com/matlabcentral/fileexchange/27395-fast-non-local-means-1d--2d-color-and-3d, accessed April 2017.
    22. 22)
      • 16. Wu, K., Zhang, X., Ding, M.: ‘Curvelet based non-local means algorithm for image denoising’, AEU-Int. J. Electron. Commun., 2014, 68, (1), pp. 3743.
    23. 23)
      • 29. Zhang, L., Dong, W., Zhang, D., et al: ‘Two-stage image denoising by principal component analysis with local pixel grouping’, Pattern Recognit., 2010, 43, (4), pp. 15311549.
    24. 24)
      • 21. Zha, Z., Liu, X., Zhou, Z., et al: ‘Image denoising via group sparsity residual constraintIEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 17871791, doi: 10.1109/ICASSP.2017.7952464.
    25. 25)
      • 3. Buades, A., Coll, B., Morel, J.M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    26. 26)
      • 1. Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 106128.
    27. 27)
      • 25. Alecu, A., Munteanu, A., Pizurica, A., et al: ‘Information-theoretic analysis of dependencies between curvelet coefficients’. IEEE Int. Conf. on Image Processing, 2006, pp. 16171620.
    28. 28)
      • 7. Chang, S.G., Yu, B., Vetterli, M.: ‘Adaptive wavelet thresholding for image denoising and compression’, IEEE Trans. Image Process., 2000, 9, (9), pp. 15321546.
    29. 29)
      • 32. Deledalle, C.A., Salmon, J., Dalalyan, A.S.: ‘Image denoising with patch based PCA: local versus global’. British Machine Vision Conf. (BMVC), 2011, vol. 81, pp. 425455.
    30. 30)
      • 35. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space’. IEEE Int. Conf. on Image Processing (ICIP), 2007, vol. 1, pp. I313.
    31. 31)
      • 30. Ponomarenko, N., Lukin, V., Zelensky, A., et al: ‘Tid2008-a database for evaluation of full-reference visual quality assessment metrics’, Adv. Mod. Radioelectron., 2009, 10, (4), pp. 3045.
    32. 32)
      • 24. Deledalle, C.A., Duval, V., Salmon, S.: ‘Non-local methods with shape-adaptive patches (NLM-SAP)’, J. Math. Imag. Vis., 2012, 43, (2), pp. 103120.
    33. 33)
      • 33. Easley, G., Labate, D., Lim, W.Q.: ‘k -SVD: An algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    34. 34)
      • 22. Karami, A., Tafakori, L.: ‘Image denoising using generalised Cauchy filter’, IET Image Process., 2017, 11, (9), pp. 767776.
    35. 35)
      • 5. Donoho, D.L., Johnstone, J.M.: ‘Ideal spatial adaptation by wavelet shrinkage’, Biometrika, 1994, 81, (3), pp. 425455.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0825
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0825
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address