http://iet.metastore.ingenta.com
1887

Semi-automatic leaf disease detection and classification system for soybean culture

Semi-automatic leaf disease detection and classification system for soybean culture

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Development of automatic disease detection and classification system is significantly explored in precision agriculture. In the past few decades, researchers have studied several cultures exploiting different parts of a plant. A similar study is performed for Soybean using leaf images. A rule based semi-automatic system using concepts of k-means is designed and implemented to distinguish healthy leaves from diseased leaves. In addition, a diseased leaf is classified into one of the three categories (downy mildew, frog eye, and Septoria leaf blight). Experiments are performed by separately utilising colour features, texture features, and their combinations to train three models based on support vector machine classifier. Results are generated using thousands of images collected from PlantVillage dataset. Acceptable average accuracy values are reported for all the considered combinations which are also found to be better than existing ones. This study also attempts to discover the best performing feature set for leaf disease detection in Soybean. The system is shown to efficiently compute the disease severity as well. Visual examination of leaf samples further proves the suitability of the proposed system for detection, classification, and severity calculation.

References

    1. 1)
      • 1. ‘Nitrogen fixation’, available at https://en.wikipedia.org/wiki/Nitrogen_fixation, accessed February 2017.
        .
    2. 2)
      • S. Savary , A. Ficke , J.-N. Aubertot .
        2. Savary, S., Ficke, A., Aubertot, J.-N., et al: ‘Crop losses due to diseases and their implications for global food production losses and food security’, Food Secur., 2012, 4, (4), pp. 519537.
        . Food Secur. , 4 , 519 - 537
    3. 3)
      • 3. ‘Diagnosing plant problems: plant diseases and disorders’, available at https://firstdetector.org/static/pdf/NPDNDiagnosingPlantProblemsPlantDiseaseforreview2.pdf, accessed February 2017.
        .
    4. 4)
      • 4. ‘Signs and symptoms of plant disease: Is it fungal, viral or bacterial?’, available at http://msue.anr.msu.edu/news/signs_and_symptoms_of_plant_disease_is_it_fungal_viral_or_bacterial, accessed January 2017.
        .
    5. 5)
      • X. Li , X.B. Yang .
        5. Li, X., Yang, X.B.: ‘Similarity, pattern, and grouping of soybean fungal diseases in the United States: implications for the risk of soybean rust’, Plant Dis., 2009, 93, (2), pp. 162169.
        . Plant Dis. , 2 , 162 - 169
    6. 6)
      • 6. ‘Soybean growth and development’, available at http://corn.agronomy.wisc.edu/Crops/Soybean/pdfs/L004.pdf, accessed February 2017.
        .
    7. 7)
      • M.A. Mian , A.M. Missaoui , D.R. Walker .
        7. Mian, M.A., Missaoui, A.M., Walker, D.R., et al: ‘Frogeye leaf spot of soybean: a review and proposed race designations for isolates of Cercospora sojina Hara’, Crop Sci., 2008, 48, (1), pp. 1424.
        . Crop Sci. , 1 , 14 - 24
    8. 8)
      • 8. ‘Characteristics of soybean foliar diseases from bacterial blight to rust’, available at http://extension.cropsciences.illinois.edu/fieldcrops/classics/2005/characteristicsofsoybeandiseases.php, accessed January 2017.
        .
    9. 9)
      • 9. ‘Soybean diseases’, available at https://alliedcooperative.files.wordpress.com/2014/07/soybeandiseases.pdf, accessed January 2017.
        .
    10. 10)
      • L.J. Giesler .
        10. Giesler, L.J.: ‘Frog eye leaf spot of soybean’, available at http://extensionpublications.unl.edu/assets/pdf/g2213.pdf, accessed February 2017.
        .
    11. 11)
      • D.P. Hughes , M. Salathé .
        11. Hughes, D.P., Salathé, M.: ‘An open access repository of images on plant health to enable the development of mobile disease diagnostics’, 2015 CoRR abs/1511.08060.
        .
    12. 12)
      • S. Shrivastava , D.S. Hooda .
        12. Shrivastava, S., Hooda, D.S.: ‘Automatic brown spot and frog eye detection from the image captured in the field’, Am. J. Intell. Syst., 2014, 4, (4), pp. 131134.
        . Am. J. Intell. Syst. , 4 , 131 - 134
    13. 13)
      • S. Shrivastava , S.K. Singh , D.S. Hooda .
        13. Shrivastava, S., Singh, S.K., Hooda, D.S.: ‘Statistical texture and normalized discrete cosine transform-based automatic soya plant foliar infection cataloguing’, Br. J. Math. Comput. Sci., 2014, 4, (20), pp. 29012916.
        . Br. J. Math. Comput. Sci. , 20 , 2901 - 2916
    14. 14)
      • S. Gharge , P. Singh . (2016)
        14. Gharge, S., Singh, P.: ‘Image processing for soybean disease classification and severity estimation’, in Shetty, N., Prasad, N., Nalini, N. (Eds.): ‘Emerging research in computing, information, communication and applications’ (Springer, New Delhi, India, 2016), pp. 493500.
        .
    15. 15)
      • Y. Dandawate , R. Kokare .
        15. Dandawate, Y., Kokare, R.: ‘An automated approach for classification of plant diseases towards development of futuristic decision support system in Indian perspective’. Proc. IEEE Int. Conf. Advances in Computing, Communications and Informatics (ICACCI), Kerala, India, August 2015, pp. 794799.
        . Proc. IEEE Int. Conf. Advances in Computing, Communications and Informatics (ICACCI) , 794 - 799
    16. 16)
      • J.G.A. Barbedo , C.V. Godoy .
        16. Barbedo, J.G.A., Godoy, C.V.: ‘Automatic classification of soybean diseases based on digital images of leaf symptoms’. SBI AGRO, October 2015.
        . SBI AGRO
    17. 17)
      • S. Shrivastava , S.K. Singh , D.S. Hooda .
        17. Shrivastava, S., Singh, S.K., Hooda, D.S.: ‘Color sensing and image processing-based automatic soybean plant foliar disease severity detection and estimation’, Multimedia Tools Appl., 2015, 74, (24), pp. 1146711484.
        . Multimedia Tools Appl. , 24 , 11467 - 11484
    18. 18)
      • S.B. Jadhav , S.B. Patil .
        18. Jadhav, S.B., Patil, S.B.: ‘Grading of soybean leaf disease based on segmented image using k-means clustering’, Int. J. Adv. Res. Electron. Commun. Eng., 2015, 4, (6), pp. 18161822.
        . Int. J. Adv. Res. Electron. Commun. Eng. , 6 , 1816 - 1822
    19. 19)
      • J.D. Pujari , R.S. Yakkundimath , S. Jahagirdar .
        19. Pujari, J.D., Yakkundimath, R.S., Jahagirdar, S., et al: ‘Quantitative detection of soybean rust using image processing techniques’, J. Crop Prot., 2015, 5, (1), pp. 7587.
        . J. Crop Prot. , 1 , 75 - 87
    20. 20)
      • 20. Hunter lab color scale’, Insight on Color, Hunter Labs Reston, 1996, 8, (9), pp. 14, available at https://support.hunterlab.com/hc/en-us/article_attachments/201440625/an08_96a2.pdf.
        . Insight on Color, Hunter Labs Reston , 9 , 1 - 4
    21. 21)
      • X. Wang , R. Hänsch , L. Ma .
        21. Wang, X., Hänsch, R., Ma, L., et al: ‘Comparison of different color spaces for image segmentation using graph-cut’. Proc. IEEE Int. Conf. in Computer Vision Theory and Applications (VISAPP), January 2014, pp. 301308.
        . Proc. IEEE Int. Conf. in Computer Vision Theory and Applications (VISAPP) , 301 - 308
    22. 22)
      • G.A.F. Seber . (1984)
        22. Seber, G.A.F.: ‘Multivariate observations’ (Wiley, New York, 1984).
        .
    23. 23)
      • H. Spath . (1985)
        23. Spath, H.: ‘Cluster dissection and analysis: theory, FORTRAN programs, examples’, translated by J. Goldschmidt (Halsted Press, New York, 1985).
        .
    24. 24)
      • K.R. Gavhale , U. Gawande .
        24. Gavhale, K.R., Gawande, U.: ‘An overview of the research on plant leaves disease detection using image processing techniques’, IOSR J. Comput. Eng., 2014, 16, (1), pp. 1016.
        . IOSR J. Comput. Eng. , 1 , 10 - 16
    25. 25)
      • J. Sachdeva , V. Kumar , I. Gupta .
        25. Sachdeva, J., Kumar, V., Gupta, I., et al: ‘A package-SFERCB-segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors’, Appl. Soft Comput., 2016, 47, pp. 151167.
        . Appl. Soft Comput. , 151 - 167
    26. 26)
      • J. Huang .
        26. Huang, J.: ‘Color-spatial image indexing and applications’. PhD thesis, Cornell University, 1998.
        .
    27. 27)
      • Y. Mistry , D.T. Ingole , M.D. Ingole .
        27. Mistry, Y., Ingole, D.T., Ingole, M.D.: ‘Content based image retrieval using hybrid features and various distance metric’, J. Electr. Syst. Inf. Technol., 2017, article in press, doi: http://dx.doi.org/10.1016/j.jesit.2016.12.009.
        . J. Electr. Syst. Inf. Technol.
    28. 28)
      • R.M. Haralick , K. Shanmugam , I. Dinstein .
        28. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
        . Trans. Syst. Man Cybern. , 6 , 610 - 621
    29. 29)
      • B.S. Manjunath , W.Y. Ma .
        29. Manjunath, B.S., Ma, W.Y.: ‘Texture features for browsing and retrieval of image data’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (8), pp. 837842.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 837 - 842
    30. 30)
      • F.H. Cheng , Y.L. Chen .
        30. Cheng, F.H., Chen, Y.L.: ‘Real time multiple objects tracking and identification based on discrete wavelet transform’, Pattern Recognit., 2006, 39, pp. 11261139.
        . Pattern Recognit. , 1126 - 1139
    31. 31)
      • R. Yadav , R.S. Anand , M.L. Dewal .
        31. Yadav, R., Anand, R.S., Dewal, M.L., et al: ‘Performance analysis of discrete wavelet transform based first-order statistical texture features for hardwood species classification’, Procedia Comput. Sci., 2015, 57, pp. 214221.
        . Procedia Comput. Sci. , 214 - 221
    32. 32)
      • V. Amsaveni , N.A. Singh , J. Dheeba .
        32. Amsaveni, V., Singh, N.A., Dheeba, J.: ‘Application of support vector machine classifier for computer aided diagnosis of brain tumor from MRI’. Proc. Int. Conf. on Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, India, December 2014, pp. 514522.
        . Proc. Int. Conf. on Swarm, Evolutionary, and Memetic Computing , 514 - 522
    33. 33)
      • H. Yu , S. Kim . (2012)
        33. Yu, H., Kim, S.: ‘SVM tutorial-classification, regression and ranking’, in Rozenberg, G., Bäck, T., Kok, J.N. (Eds.): ‘Handbook of natural computing’ (Springer, Berlin Heidelberg, 2012), pp. 479506.
        .
    34. 34)
      • S. Kaur , S. Pandey , S. Goel .
        34. Kaur, S., Pandey, S., Goel, S.: ‘An automatic leaf disease detection system for legume species’, J. Biol. Today's World, 2017, 6, pp. 115122.
        . J. Biol. Today's World , 115 - 122
    35. 35)
      • 35. ‘IPM Images’, available at https://www.ipmimages.org/, accessed January 2017.
        .
    36. 36)
      • J.G.A. Barbedo .
        36. Barbedo, J.G.A.: ‘A review on the main challenges in automatic plant disease identification based on visible range images’, Biosyst. Eng., 2016, 144, pp. 5260.
        . Biosyst. Eng. , 52 - 60
    37. 37)
      • J. Cai , S. Miklavcic .
        37. Cai, J., Miklavcic, S.: ‘Automated extraction of three-dimensional cereal plant structures from two-dimensional orthographic images’, IET Image Process., 2012, 6, (6), pp. 687696.
        . IET Image Process. , 6 , 687 - 696
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0822
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0822
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address