http://iet.metastore.ingenta.com
1887

Generalised non-locally centralised image de-noising using sparse dictionary

Generalised non-locally centralised image de-noising using sparse dictionary

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, image de-noising algorithm based on sparse representation has received an increasing amount of attention. Such algorithms proposed a comprehensive sparse representation model, by solving the sparse coding problem and choosing the proper method for dictionary updating to achieve better de-noising results. Therefore, the construction of learning dictionary has become one of the key problems that limit the de-noising effectiveness. The non-locally centralised sparse representation de-noising algorithm uses principal component analysis method to achieve dictionary updating. Nevertheless, the instability of a single complete dictionary in sparse coding leads to erratic result in the process of the original image restoration. In this study, the authors present a new method named generalised non-locally centralised sparse representation algorithm. In the proposed method, the authors cluster the training patches extracted from a set of example images into subspaces, and then train dictionaries for subspaces by sparse analysis k-singular value decomposition dictionary, which is utilised to construct coded sub-block dictionary to avoid the instable results caused by a single dictionary. Experiments show that the improved method has better signal-to-noise ratio and de-noising effect compared with other methods.

References

    1. 1)
      • T. Li , W. Wang , L. Xu .
        1. Li, T., Wang, W., Xu, L., et al: ‘Image denoising using low-rank dictionary and sparse representation’. Tenth Int. Conf. on Computational Intelligence and Security, Kunming, 2014, pp. 228232.
        . Tenth Int. Conf. on Computational Intelligence and Security , 228 - 232
    2. 2)
      • R. Giryes , M. Elad .
        2. Giryes, R., Elad, M.: ‘Poisson denoising using sparse representations and dictionary learning’, IEEE Trans. Image Process, 2014, 23, pp. 50575069.
        . IEEE Trans. Image Process , 5057 - 5069
    3. 3)
      • J. Yang , Y.Q. Zhao , J.C.W. Chan .
        3. Yang, J., Zhao, Y.Q., Chan, J.C.W., et al: ‘Coupled sparse denoising and unmixing with low-rank constraint for hyperspectral image’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (3), pp. 18181833.
        . IEEE Trans. Geosci. Remote Sens. , 3 , 1818 - 1833
    4. 4)
      • P. Irofti .
        4. Irofti, P.: ‘Sparse denoising with learned composite structured dictionaries’. Int. Conf. on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, 2015, pp. 331336.
        . Int. Conf. on System Theory, Control and Computing (ICSTCC) , 331 - 336
    5. 5)
      • R. Cai , S. Weng , B. Luo .
        5. Cai, R., Weng, S., Luo, B., et al: ‘Optimizing the framework of image denoising based on sparse and redundant representations’. Chinese Control and Decision Conf. (CCDC), Yinchuan, 2016, pp. 27572762.
        . Chinese Control and Decision Conf. (CCDC) , 2757 - 2762
    6. 6)
      • Z. Liu , L. Yu , M. Zhang .
        6. Liu, Z., Yu, L., Zhang, M., et al: ‘Nonlocal structured nonparametric Bayesian dictionary learning for image denoising’. 2016 IEEE 13th Int. Conf. on Signal Processing (ICSP), 2016, pp. 144148.
        . 2016 IEEE 13th Int. Conf. on Signal Processing (ICSP) , 144 - 148
    7. 7)
      • A. Buades , B. Coll , J.M. Morel .
        7. Buades, A., Coll, B., Morel, J.M.: ‘A non-local algorithm for image denoising’. 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, vol. 2, pp. 6065.
        . 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , 60 - 65
    8. 8)
      • W. Dong , L. Zhang , G. Shi .
        8. Dong, W., Zhang, L., Shi, G.: ‘Centralized sparse representation for image restoration’. 2011 IEEE Int. Conf. on Computer Vision (ICCV), 2011, pp. 12591266.
        . 2011 IEEE Int. Conf. on Computer Vision (ICCV) , 1259 - 1266
    9. 9)
      • Q. Liu , C. Zhang , Q. Guo .
        9. Liu, Q., Zhang, C., Guo, Q., et al: ‘Adaptive sparse coding on PCA dictionary for image denoising’, The Visual Computer, 2016, 32, (4), pp. 535549.
        . The Visual Computer , 4 , 535 - 549
    10. 10)
      • J. Sulam , M. Elad .
        10. Sulam, J., Elad, M.: ‘Expected patch log likelihood with a sparse prior’. Energy Minimization Methods in Computer Vision and Pattern Recognition, 2015 (LNCS), pp. 99111.
        . Energy Minimization Methods in Computer Vision and Pattern Recognition , 99 - 111
    11. 11)
      • J. Mairal , F. Bach , J. Ponce .
        11. Mairal, J., Bach, F., Ponce, J., et al: ‘Non-local sparse models for image restoration’. IEEE 12th Int. Conf. on Computer Vision, Kyoto, 2009, pp. 22722279.
        . IEEE 12th Int. Conf. on Computer Vision , 2272 - 2279
    12. 12)
      • W.S. Dong , L. Zhang , G.M. Shi .
        12. Dong, W.S., Zhang, L., Shi, G.M., et al: ‘Nonlocal centralized sparse representation for image restoration’, IEEE Trans. Image Process., 2013, 22, (4), pp. 16201630.
        . IEEE Trans. Image Process. , 4 , 1620 - 1630
    13. 13)
      • J. Yang , J. Wright , T.S. Huang .
        13. Yang, J., Wright, J., Huang, T.S.: ‘Image super-resolution via sparse representation’, IEEE Trans. Image Process., 2010, 19, (11), pp. 28612873.
        . IEEE Trans. Image Process. , 11 , 2861 - 2873
    14. 14)
      • G.S. Koutsogiannis , J.J. Soraghan .
        14. Koutsogiannis, G.S., Soraghan, J.J.: ‘Kernel principal component analysis (KPCA) for the de-noising of communication signals’. 11th European Signal Processing Conf., Toulouse, 2002, pp. 14.
        . 11th European Signal Processing Conf. , 1 - 4
    15. 15)
      • A. Qayyum , A.S. Malik , M. Naufal .
        15. Qayyum, A., Malik, A.S., Naufal, M., et al: ‘Designing of overcomplete dictionaries based on DCT and DWT’. IEEE Student Symp. in Biomedical Engineering & Sciences (ISSBES), Shah Alam, 2015, pp. 134139.
        . IEEE Student Symp. in Biomedical Engineering & Sciences (ISSBES) , 134 - 139
    16. 16)
      • K. Engan , S.O. Aase , J.H. Husoy .
        16. Engan, K., Aase, S.O., Husoy, J.H.: ‘Frame based signal compression using method of optimal directions (MOD)’. Proc. of the 1999 IEEE Int. Symp. on Circuits and Systems, Orlando, FL, 1999, pp. 14.
        . Proc. of the 1999 IEEE Int. Symp. on Circuits and Systems , 1 - 4
    17. 17)
      • S.O. Coumar , P. Rajesh , S. Sadanandam .
        17. Coumar, S.O., Rajesh, P., Sadanandam, S.: ‘Image restoration using filters and image quality assessment using reduced reference metrics’, Circuits Controls Commun., 2013, 115, (6), pp. 15.
        . Circuits Controls Commun. , 6 , 1 - 5
    18. 18)
      • Y. Fu , A. Lam , I. Sato .
        18. Fu, Y., Lam, A., Sato, I., et al: ‘Adaptive spatial-spectral dictionary learning for hyperspectral image restoration’, Int. J. Comput. Vis., 2017, 122, (2), pp. 228245.
        . Int. J. Comput. Vis. , 2 , 228 - 245
    19. 19)
      • R. Rubinstein , T. Faktor , M. Elad .
        19. Rubinstein, R., Faktor, T., Elad, M.: ‘K-SVD dictionary-learning for the sparse sparse model’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, 2012, pp. 54055408.
        . IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) , 5405 - 5408
    20. 20)
      • R. Rubinstein , T. Peleg , M. Elad .
        20. Rubinstein, R., Peleg, T., Elad, M.: ‘K-SVD dictionary-learning for the analysis sparse model’, IEEE Trans. Signal Process., 2012, 61, (3), pp. 661677.
        . IEEE Trans. Signal Process. , 3 , 661 - 677
    21. 21)
      • Y. Romano , M. Elad .
        21. Romano, Y., Elad, M.: ‘Improving K-SVD denoising by post-processing its method-noise’. Image Processing, Melbourne, Australia, 2013, pp. 435439.
        . Image Processing , 435 - 439
    22. 22)
      • P. Su , T. Liu , Z. Sun .
        22. Su, P., Liu, T., Sun, Z.: ‘K-SVD based image denoising method using image residual information in different frequency bands’. Int. Conf. on Intelligent Computing, 2016, pp. 482492.
        . Int. Conf. on Intelligent Computing , 482 - 492
    23. 23)
      • H.S. Goklani , J.N. Sarvaiya , A.M. Fahad .
        23. Goklani, H.S., Sarvaiya, J.N., Fahad, A.M.: ‘Image reconstruction using orthogonal matching pursuit (OMP) algorithm’. Emerging Technology Trends in Electronics, Communication and Networking, Surat, 2014, pp. 15.
        . Emerging Technology Trends in Electronics, Communication and Networking , 1 - 5
    24. 24)
      • W. Dong , G. Shi , X. Li .
        24. Dong, W., Shi, G., Li, X.: ‘Nonlocal image restoration with bilateral variance estimation: a low-rank approach’, IEEE Trans. Image Process., 2013, 22, (2), pp. 700711.
        . IEEE Trans. Image Process. , 2 , 700 - 711
    25. 25)
      • K. Dabov , A. Foi , V. Katkovnik .
        25. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-d transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
        . IEEE Trans. Image Process. , 8 , 2080 - 2095
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0783
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0783
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address