http://iet.metastore.ingenta.com
1887

Improved particle swarm optimisation to estimate bone age

Improved particle swarm optimisation to estimate bone age

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper automatizes the process of bone age maturity assessment by applying three versions of particle swarm optimization (PSO) along with image processing methods to the left hand X-ray images. PSO versions were adopted to enhance the segmentation accuracy. The proposed method was compared to the conventional visual inspection method in terms of three segmentation criteria, classification accuracy, robustness against noise and computational complexity. Herein, PSO, worst behavior-based PSO (WB-PSO) and adaptive inertia weight (AIW-PSO) along with Otsu and an iteratively statistical method were implemented to segment the hand radiographs. A dataset containing left hand-wrist radiographs from 65 referred children was collected. Their results provided 82.49, 83.08, 84.27, 81.76 and 69.04% classification accuracy using the PSO, WB-PSO, AIW-PSO, Otsu and the iteratively statistical methods, respectively. To assess the robustness of the implemented methods, white Gaussian noise with different intensities was added to the images and the results indicated that as the noise level increased the robustness against noise for the PSO variants became more highlighted compared to the Otsu and statistical methods. Due to the convincing results, the AIW-PSO image segmentation system is suggested as an auxiliary diagnostic tool to help specialists for more accurate age bone estimation.

References

    1. 1)
      • D.B. Darling , M.A. James . (1962)
        1. Darling, D.B., James, M.A.: ‘Radiography of infants and children’ (Springfield, Illinois, 1962).
        .
    2. 2)
      • F. Vogelsang , M. Kohnen , H. Schneider .
        2. Vogelsang, F., Kohnen, M., Schneider, H., et al: ‘Skeletal maturity determination from hand radiograph by model based analysis’. SPIE Conf. Medical Imaging and Image Processing, 2000.
        . SPIE Conf. Medical Imaging and Image Processing
    3. 3)
      • S. Mahmoodi , B.S. Sharif , E.G. Chester .
        3. Mahmoodi, S., Sharif, B.S., Chester, E.G., et al: ‘Automated vision system for skeletal age assessment using knowledge based techniques’. IEEE Int. Conf. Image Processing and Its Applications, Orlando, USA, 1997.
        . IEEE Int. Conf. Image Processing and Its Applications
    4. 4)
      • E. Pietka , S. Gertychh , S. Pospiech .
        4. Pietka, E., Gertychh, S., Pospiech, S., et al: ‘Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction’, IEEE Trans. Med. Imaging, 2001, 20, (8), pp. 715729.
        . IEEE Trans. Med. Imaging , 8 , 715 - 729
    5. 5)
      • D. Jafari , H. Taheri , H. Shariatzade .
        5. Jafari, D., Taheri, H., Shariatzade, H., et al: ‘Radiographic indices in one hundred fifty normal Iranian wrists’, Med. J. Islamic Republic Iran, 2012, 26, (3), pp. 132139.
        . Med. J. Islamic Republic Iran , 3 , 132 - 139
    6. 6)
      • W.W. Greulich , S.I. Pyle . (2017)
        6. Greulich, W.W., Pyle, S.I.: ‘Radiographic atlas of skeletal development of hand wrist’ (Stanford University Press, 2017).
        .
    7. 7)
      • V. Gilsanz , O. Ratib . (2005)
        7. Gilsanz, V., Ratib, O.: ‘Hand bone age, a digital atlas of skeletal maturity’ (Springer-Verlag, Germany, 2005).
        .
    8. 8)
      • M. Satoh .
        8. Satoh, M.: ‘Bone age: assessment methods and clinical applications’, Clin. Pediatric Endocrinol., 2015, 24, (4), pp. 143152.
        . Clin. Pediatric Endocrinol. , 4 , 143 - 152
    9. 9)
      • C. Spampinato . (1995)
        9. Spampinato, C.: ‘Skeletal bone age assessment’ (University of Catania, Italy, 1995).
        .
    10. 10)
      • W.F. Anderson , R.M. Pfeiffer , G.M. Dores .
        10. Anderson, W.F., Pfeiffer, R.M., Dores, G.M., et al: ‘Comparison of age distribution patterns for different histopathologic types of breast carcinoma’, Cancer Epidemiol. Biomarkers Prev., 2006, 15, (10), pp. 18991905.
        . Cancer Epidemiol. Biomarkers Prev. , 10 , 1899 - 1905
    11. 11)
      • L. Bocchi , F. Ferrara , Valli G. Nicoletti .
        11. Bocchi, L., Ferrara, F., Nicoletti, Valli G.: ‘An artificial neural network architecture for skeletal age’. Int. Conf. Image Processing, Spain, 2003.
        . Int. Conf. Image Processing
    12. 12)
      • M. Vignolo , S. Milani , G. Cerbello .
        12. Vignolo, M., Milani, S., Cerbello, G., et al: ‘FELS, Greulich-Pyle, and Tanner-Whitehouse bone age assessments in a group of Italian children and adolescents’, Am. J. Hum. Biol., 1992, 4, (4), pp. 493500.
        . Am. J. Hum. Biol. , 4 , 493 - 500
    13. 13)
      • J.M. Tanner , R.H. Whitehouse , N. Cameron . (1983)
        13. Tanner, J.M., Whitehouse, R.H., Cameron, N., et al: ‘Assessment of skeletal maturity and prediction of adult height (TW2 method)’ (Academic Press, London, UK, 1983, 2nd edn.).
        .
    14. 14)
      • R.K. Bull , P.D. Edwards , P.M. Kemp .
        14. Bull, R.K., Edwards, P.D., Kemp, P.M., et al: ‘Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods’, Arch. Dis. Childhood, 1999, 81, (2), pp. 172173.
        . Arch. Dis. Childhood , 2 , 172 - 173
    15. 15)
      • D.J. Michael , A.C. Nelson .
        15. Michael, D.J., Nelson, A.C.: ‘A model-based system for automatic segmentation of bones from digital hand radiographs’, IEEE Trans. Med. Imaging, 1989, 8, (1), pp. 6469.
        . IEEE Trans. Med. Imaging , 1 , 64 - 69
    16. 16)
      • G.K. Manos , A.Y. Cairns , I.W. Rickets .
        16. Manos, G.K., Cairns, A.Y., Rickets, I.W., et al: ‘Segmenting radiographs of the hand and wrist’, Comput. Methods Programs Biomed., 1994, 43, (3–4), pp. 227237.
        . Comput. Methods Programs Biomed. , 227 - 237
    17. 17)
      • S.N. Cheng , H.P. Chan , L.T. Niklason .
        17. Cheng, S.N., Chan, H.P., Niklason, L.T., et al: ‘Automated segmentation of regions of interest on hand radiographs’, Med. Phys., 1994, 21, (8), pp. 12931300.
        . Med. Phys. , 8 , 1293 - 1300
    18. 18)
      • T.F. Chan , L.A. Vese .
        18. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (1), pp. 266277.
        . IEEE Trans. Image Process. , 1 , 266 - 277
    19. 19)
      • D. Mandal , A. Chatterjee , M. Maitra .
        19. Mandal, D., Chatterjee, A., Maitra, M.: ‘Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach’, Eng. Appl. Artif. Intell., 2014, 35, pp. 199214.
        . Eng. Appl. Artif. Intell. , 199 - 214
    20. 20)
      • P. Thangam , K. Thanushkodi , T.V. Mahendiran .
        20. Thangam, P., Thanushkodi, K., Mahendiran, T.V.: ‘PSO for graph-based segmentation of wrist bones in bone age assessment’, Int. J. Comput. Commun. Control, 2013, 8, (1), pp. 153160.
        . Int. J. Comput. Commun. Control , 1 , 153 - 160
    21. 21)
      • R.C. Gonzalez , R.E. Woods . (2007)
        21. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson, 2007, 3rd edn.).
        .
    22. 22)
      • R.C. Eberhart , Y. Shi .
        22. Eberhart, R.C., Shi, Y.: ‘Particle swarm optimization: developments, applications and resources’. IEEE Int. Conf. Evolutionary Computation, South Korea, 2001, pp. 8186.
        . IEEE Int. Conf. Evolutionary Computation , 81 - 86
    23. 23)
      • X. Wang , J. Yang , X. Teng .
        23. Wang, X., Yang, J., Teng, X., et al: ‘Feature selection based on rough sets and particle swarm optimization’, Pattern Recognit. Lett., 2007, 28, pp. 459471.
        . Pattern Recognit. Lett. , 459 - 471
    24. 24)
      • C. Yang , D. Simon .
        24. Yang, C., Simon, D.: ‘A new particle swarm optimization technique’. IEEE Int. Conf. System Engineering, LasVegas, USA, 2005.
        . IEEE Int. Conf. System Engineering
    25. 25)
      • A. Nickabadi , M.M. Ebadzadeh , R. Safabakhsh .
        25. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: ‘A novel particle swarm optimization algorithm with adaptive inertia weight’, Appl. Soft Comput., 2011, 11, pp. 36583670.
        . Appl. Soft Comput. , 3658 - 3670
    26. 26)
      • A.L. Barbieri , G.F. de Arruda , F.A. Rodrigues .
        26. Barbieri, A.L., de Arruda, G.F., Rodrigues, F.A., et al: ‘An entropy-based approach to automatic image segmentation of satellite images’, Physica A, 2011, 390, pp. 512518.
        . Physica A , 512 - 518
    27. 27)
      • P.K. Sahoo , G. Arora .
        27. Sahoo, P.K., Arora, G.: ‘A thresholding method based on two-dimensional Renyi's entropy’, Pattern Recognit., 2004, 37, pp. 11491161.
        . Pattern Recognit. , 1149 - 1161
    28. 28)
      • S. Mahalakshmi , T. Velmurugan .
        28. Mahalakshmi, S., Velmurugan, T.: ‘Detection of brain tumor by particle swarm optimization using image segmentation’, Indian J. Sci. Technol., 2015, 8, (22), pp. 1319.
        . Indian J. Sci. Technol. , 22 , 13 - 19
    29. 29)
      • N. Otsu .
        29. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
        . IEEE Trans. Syst. Man Cybern. , 1 , 62 - 66
    30. 30)
      • S. Arora , J. Acharya , A. Verma .
        30. Arora, S., Acharya, J., Verma, A., et al: ‘Multilevel thresholding for image segmentation through a fast statistical recursive algorithm’, Pattern Recognit. Lett., 2008, 29, pp. 119125.
        . Pattern Recognit. Lett. , 119 - 125
    31. 31)
      • M.S.R. Naidu , P.R. Kumar , K. Chiranjeevi .
        31. Naidu, M.S.R., Kumar, P.R., Chiranjeevi, K.: ‘Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation’, Alexandria Eng. J., 2017, in press.
        . Alexandria Eng. J.
    32. 32)
      • G. Lei , Q. Lin , C. Enqing .
        32. Lei, G., Lin, Q., Enqing, C., et al: ‘A fisher discriminant framework based on kernel entropy component analysis for feature extraction and emotion recognition’. IEEE Int. Conf. Multimedia and Expo Workshops, China, 2014.
        . IEEE Int. Conf. Multimedia and Expo Workshops
    33. 33)
      • S. Yin , Y. Qian , M. Gong .
        33. Yin, S., Qian, Y., Gong, M.: ‘Unsupervised hierarchical image segmentation through fuzzy entropy optimization’, Pattern Recognit., 2017, 68, pp. 245259.
        . Pattern Recognit. , 245 - 259
    34. 34)
      • M. Mansourvar , R.G. Raj , M.A. Ismail .
        34. Mansourvar, M., Raj, R.G., Ismail, M.A., et al: ‘Automated web based system for bone age assessment using histogram technique’, Malaysian J. Comput. Sci., 2012, 25, (3), pp. 107121.
        . Malaysian J. Comput. Sci. , 3 , 107 - 121
    35. 35)
      • M. Mansourvar , M.A. Ismail , T. Herawan .
        35. Mansourvar, M., Ismail, M.A., Herawan, T., et al: ‘Automated bone age assessment: motivation, taxonomies, and challenges’, Comput. Math. Methods Med., 2013, pp. 111.
        . Comput. Math. Methods Med. , 1 - 11
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0545
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0545
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address