Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Image decomposition and texture analysis via combined bi-dimensional Bedrosian's principles

Image decomposition is an important issue in image processing. The existing approaches including the bi-dimensional empirical mode decomposition (BEMD) still fail to separate monocomponents in multicomponents in many cases. To solve this problem, this study proposes a new image decomposition method based on the new derived combined bi-dimensional Bedrosian's principle that has not been reported anywhere else for image processing. First, this study investigates a few bi-dimensional Bedrosian's principles according to the bi-dimensional Hilbert transforms. Second, based on the derived bi-dimensional Bedrosian's principles and the original multicomponents, the authors provide the combined bi-dimensional Bedrosian's principle and the assisted components obtained through projections via optimisation so that these monocomponents in multicomponents can be separated in the case that the existing methods fail. Third, an iterative image decomposition method is proposed via the above principles to decompose the multicomponent image into true monocomponents. The proposed method can solve the problems caused by the cross-angle and amplitude ratio and frequency ratio between these components that BEMD fails to solve. Also, the phase and amplitude are estimated for texture analysis after the decomposition is demonstrated. Experiments are shown to support the proposed methods.

References

    1. 1)
      • 34. Cohen, L., Lee, C.: ‘Standard deviation of instantaneous frequency’. Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, 1989, pp. 22382241.
    2. 2)
      • 3. Zhang, X.: ‘Modern signal processing’ (Tsinghua University Press, 2002, 2nd edn.) pp. 245.
    3. 3)
      • 5. Bulow, T., Sommer, G.: ‘Hypercomplex signals – a novel extension of the analytic signal to the multidimensional case’, IEEE Trans. Signal Process., 2001, 49, (11), pp. 28442852.
    4. 4)
      • 37. Bedrosian, E.: ‘A product theorem for Hilbert transform’, Proc. IEEE, 1963, 51, pp. 868869.
    5. 5)
      • 17. Liu, Z., Peng, S.: ‘The directional empirical mode decomposition and application in texture segmentation’, Chin. Sci. E, 2005, 35, (2), pp. 113123.
    6. 6)
      • 31. Xu, G., Wang, X., Xu, X.: ‘Bi-orthant Hilbert transform’, Progr. Nat. Sci., 2007, 17, (8), pp. 11201129.
    7. 7)
      • 27. Francos, J., Friedlander, B.: ‘Parameter estimation of 2-D random amplitude polynomial-phase signals’, IEEE Trans. Signal Process., 1999, 47, (7), pp. 17951810.
    8. 8)
      • 2. Guanlei, X., Xiaotong, W., Xiaogang, X.: ‘On analysis of bi-dimensional component decomposition via BEMD’, Pattern Recognit., 2012, 45, (4), pp. 16171625.
    9. 9)
      • 44. Xu, G., Zhou, L., Wang, X., et al: ‘Assisted signals based mode decomposition’. Int. Conf. on Image, Vision and Computing, Chengdu, China, 2017, June, pp. 868874.
    10. 10)
      • 4. Huang, N., Shen, Z., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1998, 454, pp. 903995.
    11. 11)
      • 15. Nunes, J., Guyot, S., Delechelle, E.: ‘Texture analysis based on local analysis of the bidimensional empirical mode decomposition’, Mach. Vis. Appl., 2005, (3), 16, pp. 177188.
    12. 12)
      • 35. Boashash, B.: ‘Estimating and interpreting the instantaneous frequency of a signal–part 1: fundamentals’, Proc. IEEE, 1992, 80, (4), pp. 520539.
    13. 13)
      • 32. Xu, G., Wang, X., Xu, X.: ‘Generalized Hilbert transform and its properties in 2D LCT domain’, Signal Process., 2009, 89, (7), pp. 13951402.
    14. 14)
      • 8. Yu, H., Kim-Hui, Y., Li, C., et al: ‘A novel hybrid model framework to blind color image deconvolution’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2008, 38, (4), pp. 867880.
    15. 15)
      • 13. Yang, Z., Qi, D., Yang, L.: ‘Signal period analysis based on Hilbert–Huang transform and its application to texture analysis’. IEEE, Proc. Third Int. Conf. on Image and Graphics, 2004, pp. 430433.
    16. 16)
      • 10. Han, C., Wang, G. H., Fan, C.D.: ‘A novel method to reduce speckle in SAR images’, Int. J. Remote Sens., 2002, 23, (23), pp. 50955101.
    17. 17)
      • 18. Xu, G., Wang, X., Xu, X., et al: ‘Image enhancement algorithm based on neighborhood limited empirical mode decomposition’, Acta Electron. Sin., 2006, 34, (3), pp. 99103.
    18. 18)
      • 24. Havlicek, J., Havlicek, J., Mamuya, N., et al: ‘Skewed 2D Hilbert transforms and computed AM–FM models’. Proc. 1998 IEEE Int. Conf. on Image Processing (ICIP'98), 1998, pp. 602606.
    19. 19)
      • 21. Xu, G., Wang, X., Xu, X.: ‘Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures’, Pattern Recognit., 2009, 42, (5), pp. 718734.
    20. 20)
      • 28. Maragos, P., Bovik, A.: ‘Demodulation of images modeled by amplitude–frequency modulation using multidimensional energy separation’. Proc. 1994 IEEE Int. Conf. on Image Processing (ICIP'94), 1994, vol. 3, pp. 421425.
    21. 21)
      • 33. Gabor, D.: ‘Theory of communication’, IEE Proc., 1946, 93, pp. 429457.
    22. 22)
      • 41. Tao, Q., Liming, Z.: ‘Mono-components vs IMFs in signal decomposition’, Int. J. Wavelets Multiresolution Inf. Process., 2008, 6, (3), pp. 353374.
    23. 23)
      • 43. ‘Data analytics’. Available at: https://cn.mathworks.com/solutions/data-analytics.html, accessed 27 November 2013.
    24. 24)
      • 20. Xu, G., Wang, X., Xu, X.: ‘Neighborhood limited empirical mode decomposition and application in image processing’. Fourth Int. Conf. on Image and Graphics, Chengdu of China, 2007, pp. 149154.
    25. 25)
      • 29. Kopsinis, Y., McLaughlin, S.: ‘Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach’, IEEE Trans. Signal Process., 2008, 56, (1), pp. 113.
    26. 26)
      • 42. Tao, Q.: ‘Mono-components for decomposition of signals’, Math. Methods Appl. Sci., 2006, 29, pp. 11871198.
    27. 27)
      • 12. Nunes, J., Niang, O., Bouaoune, Y., et al: ‘Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models’, Mach. Vis. Appl., 2003, 2, pp. 633635.
    28. 28)
      • 19. Xu, G., Wang, X., Xu, X., et al: ‘Multi-band image fusion algorithm based on neighborhood limited empirical mode decomposition’, J. Infrared Millim. Waves, 2006, 25, (3), pp. 225228.
    29. 29)
      • 9. Constantin, P., Mihalis, E., Mihalis, P., et al: ‘Image and pattern analysis of 1650 B.C. wall paintings and reconstruction’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2008, 38, (4), pp. 958965.
    30. 30)
      • 22. Xu, G., Wang, X., Xu, X.: ‘Improved bi-dimensional empirical mode decomposition based on 2D assisted signals: analysis and application’, IET Image Process., 2011, 5, (3), pp. 205221.
    31. 31)
      • 14. Xiong, C., Xu, J., Zou, J., et al: ‘Texture classification based on EMD and FFT’, J. Zhejiang Univ. Sci. A, 2006, 7, (9), pp. 15161521.
    32. 32)
      • 7. Thomas, V., Ramanujan, S., Andrei, G.: ‘A human vision based computational model for chromatic texture segregation’, IEEE Trans. Syst. Man Cybern. B, Cybern., 1997, 27, (3), pp. 428440.
    33. 33)
      • 26. Spagnolini, U.: ‘2-D phase unwrapping and instantaneous frequency estimation’, IEEE Trans. Geosci. Remote Sens., 1995, 33, (3), pp. 579589.
    34. 34)
      • 11. Yue, H., Guo, H., Han, C., et al: ‘A SAR interferogram filter based on the empirical mode decomposition method’. Geoscience and Remote Sensing Symp., vol. 5, 2001, pp. 20612063.
    35. 35)
      • 23. Wu, Z., Huang, N., Chen, X.: ‘The multi-dimensional ensemble empirical mode decomposition method’, Adv. Adapt. Data Anal., 2009, 1, (3), pp. 339372.
    36. 36)
      • 16. Liu, Z., Wang, H., Peng, S.: ‘Texture segmentation using directional empirical mode decomposition’. Proc. 17th Int. Conf. on Pattern Recognition, 2004, pp. 279282.
    37. 37)
      • 1. Rafael Gonzalez, C., Richard, W.: ‘Digital image processing’ (Pearson Education, 2002, 2nd edn.) pp. 116.
    38. 38)
      • 36. Boashash, B.: ‘Estimating and interpreting the instantaneous frequency of a signal–part 2: algorithms and applications’, Proc. IEEE, 1992, 80, (4), pp. 540568.
    39. 39)
      • 25. Hahn, S.: ‘Multidimensional complex signals with single-orthant spectra’, IEEE Proc., 1992, 80, (8), pp. 12871300.
    40. 40)
      • 6. Wietzke, L., Sommer, G., Fleischmann, O.: ‘The geometry of 2D image signals’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009, pp. 16901697.
    41. 41)
      • 40. Sangwine, S., Ell, T.: ‘Hypercomplex Fourier transforms of color images’, Proc. IEEE, 2001, 1, pp. 137140.
    42. 42)
      • 38. Stark, H.: ‘An extension of the Hilbert transform product theorem’, Proc. IEEE, 1971, 59, pp. 13591360.
    43. 43)
      • 30. Xu, G., Wang, X., Xu, X.: ‘Extended Hilbert transform for multidimensional signals’. IET Proc. Visual Information Engineering (VIE) 2008, Xi'an of China, 2008, pp. 292297.
    44. 44)
      • 39. Chang, P., Ding, J.: ‘2D quaternion Fourier spectral analysis and its applications’, Proc. IEEE, 2004, 3, (III), pp. 241244.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0494
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0494
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address