Improved colour-to-grey method using image segmentation and colour difference model for colour vision deficiency

Improved colour-to-grey method using image segmentation and colour difference model for colour vision deficiency

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Colour vision deficiency (CVD) is a genetic condition that has troubled people for a long time. This study proposes an improved colour-to-grey method for CVD using image segmentation and a colour difference model. In this method, the colour image is first segmented using a region growing method so that each region corresponds to one colour. Next, the colour difference is computed between arbitrary segmented region pairs. Finally, the greyscale image is obtained by minimising a target function. Experimental results show that compared with state-of-the-art colour-to-grey methods, the proposed algorithm can improve the E-score by about 10.99%.


    1. 1)
      • 1. Fairchild, M.D.: ‘Color appearance models’ (Addison-Wesley, 2005, 2nd edn.).
    2. 2)
      • 2. Viénot, F., Brettel, H., Ott, L., et al: ‘What do colour-blind people see?’, Nature, 1995, 376, pp. 127128.
    3. 3)
      • 3. Brettel, H., Viénot, F., Mollon, J.: ‘Computerized simulation of color appearance for dichromats’, J. Opt. Soc. Am., 1997, 14, (10), pp. 26472655.
    4. 4)
      • 4. Kim, Y.K., Kim, K.W., Yang, X.: ‘Real time traffic light recognition system for color vision deficiencies’. IEEE Int. Conf. on Mechatronics and Automation, 2007, ICMA 2007, 2007, pp. 7681.
    5. 5)
      • 5. Katsuhiro, N., Manami, T., Hiroshi, S., et al: ‘A way of color image processing for the colorblinds’ (Bulletin of Hiroshima Mercantile Marine College, 2016), vol. 38.
    6. 6)
      • 6. Rasche, K., Geist, R., Westall, J.: ‘Detail preserving reproduction of color images for monochromats and dichromats’, IEEE Comput. Graph., 2005, 25, (3), pp. 2230.
    7. 7)
      • 7. Navada, B.R., Santhosh, K.V.: ‘An image processing technique for color blind people to classify color and edges’. Int. Conf. on Knowledge Collaboration in Engineering, Coimbatore, India, March 2015.
    8. 8)
      • 8. Martin, C.E., Keller, J.O., Rogers, S.K., et al: ‘Color blindness and a color human visual system model’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2000, 30, (4), pp. 494500.
    9. 9)
      • 9. Gooch, A.A., Olsen, S.C., Tumblin, J., et al: ‘Color2gray: salience-preserving color removal’, ACM Trans. Graph., 2005, 24, (3), pp. 634639.
    10. 10)
      • 10. Neumann, L., Čadík, M., Nemcsics, A., et al: ‘An efficient perception-based adaptive color to gray transformation’. Eurographics Conf. on Computational Aesthetics in Graphics, Visualization and Imaging, Banff, Alberta, Canada, June 2007, pp. 7380.
    11. 11)
      • 11. Liu, Q., Liu, P.X., Xie, W., et al: ‘Gcsdecolor: gradient correlation similarity for, efficient contrast preserving decolorization’, IEEE Trans. Image Process., 2015, 24, (9), pp. 28892904.
    12. 12)
      • 12. Rasche, K.: ‘Re-coloring images for gamuts of lower dimension’, Comput. Graph. Forum, 2005, 24, (3), pp. 423432.
    13. 13)
      • 13. Lu, C., Xu, L., Jia, J.: ‘Contrast preserving decolorization with perception-based quality metrics’, Int. J. Comput. Vis., 2014, 110, (2), pp. 222239.
    14. 14)
      • 14. Lu, C., Xu, L., Jia, J.: ‘Real-time contrast preserving decolorization’. SIGGRAPH Asia 2012 Technical Briefs, 2012, pp. 17.
    15. 15)
      • 15. Du, H., He, S., Sheng, B., et al: ‘Saliency-guided color-to-gray conversion using region-based optimization’, IEEE Trans. Image Process., 2014, 24, (1), pp. 434443.
    16. 16)
      • 16. Grundland, M., Dodgson, N.A.: ‘Decolorize: fast, contrast enhancing, color to grayscale conversion’, Pattern Recogn., 2007, 40, (11), pp. 28912896.
    17. 17)
      • 17. Kim, Y., Jang, C., Demouth, J., et al: ‘Robust color-to-gray via nonlinear global mapping’, ACM Trans. Graph., 2009, 28, (5), pp. 8997.
    18. 18)
      • 18. Ancuti, C.O., Ancuti, C., Bekaert, P.: ‘Enhancing by saliency-guided decolorization’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, June 2011, pp. 257264.
    19. 19)
      • 19. Chen, D.S., Song, F.F., Zhang, Q.: ‘An adaptive global mapping approach for color to grayscale image conversion’, Comput. Syst. Appl., 2013, 22, pp. 164167.
    20. 20)
      • 21. Nazareth, J.L.: ‘Conjugate-gradient methods’ (Springer, 2001).
    21. 21)
      • 22. Jain, R., Kasturi, R., Schunck, B.G.: ‘Machine vision’ (McGraw-Hill, New York, 1995).
    22. 22)
      • 23. ‘Most of the Ishihara-colour-test-plates’. Available at, accessed 25 September 2016.

Related content

This is a required field
Please enter a valid email address