http://iet.metastore.ingenta.com
1887

Retracted: Robust Retinal Vessel Segmentation using Vessel's Location Map and Frangi Enhancement Filter

Retracted: Robust Retinal Vessel Segmentation using Vessel's Location Map and Frangi Enhancement Filter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The following article published in IET Image Processing, Shahid, Muhammad; Taj, Imtiaz A.: ‘Robust retinal vessel segmentation using vessels location map and Frangi enhancement filter’, IET Image Processing, 2018, DOI: 10.1049/ietipr. 2017.0457 on 16th January 2018 has been retracted due to a breach of the IET's Policy in Relation to Plagiarism, Infringement of Copyright and Infringement of Moral Rights and Submission to Multiple Publications. Prof. Imtiaz Ahmed Taj was unaware of and not complicit in any misconduct.

References

    1. 1)
      • 1. Klein, R., Barbara Klein, E.K.: ‘Vision disorders in diabetes’, Diabetes Am., 1995, 1, (293), p. 12.
    2. 2)
      • 2. Cavallerano, J., Aiello, L.M.: ‘Emerging trends in ocular telemedicine: the diabetic retinopathy model’, J. Telemed. Telcare, 2005, 11, (4), pp. 163166.
    3. 3)
      • 3. Lai, N.; ‘Clinical ophthalmology: a systematic approach’, 2004, p. 295.
    4. 4)
      • 4. Bernardes, R., Serranho, P., Lobo, C.: ‘Digital ocular fundus imaging: a review’, Ophthalmologica, 2011, 226, (4), pp. 161181.
    5. 5)
      • 5. Erdt, M., Steger, S., Sakas, G.: ‘Regmentation: a new view of image segmentation and registration’, J. Radiat. Oncol. Inf., 2012, 4, (1), pp. 123.
    6. 6)
      • 6. Miri, M.S., Mahloojifar, A.: ‘Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction’, IEEE Trans. Biomed. Eng., 2011, 58, (5), pp. 11831192.
    7. 7)
      • 7. Kanski, J.J., Bowling, B.: ‘Synopsis of clinical ophthalmology e-book’ (Elsevier Health Sciences, 2012).
    8. 8)
      • 8. Li, Y., Gregori, G., Knighton, R.W., et al: ‘Registration of OCT fundus images with color fundus photographs based on blood vessel ridges’, Opt. Express, 2011, 19, (1), pp. 716.
    9. 9)
      • 9. Spinella, E.:‘Biometric scanning technologies: finger, facial and retinal scanning’ (SANS Institute, San Francisco, CA, 2003), p. 28.
    10. 10)
      • 10. Shabbir, S., Tariq, A., Usman Akram, M.: ‘A comparison and evaluation of computerized methods for blood vessel enhancement and segmentation in retinal images’, Int. J. Future Comput. Commun., 2013, 2, (6), p. 600.
    11. 11)
      • 11. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘Blood vessel segmentation methodologies in retinal images–a survey’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 407433.
    12. 12)
      • 12. Azzopardi, G., Strisciuglio, N., Vento, M., et al: ‘Trainable COSFIRE filters for vessel delineation with application to retinal images’, Med. Image Anal., 2015, 19, (1), pp. 4657.
    13. 13)
      • 13. Ricci, E., Perfetti, R.: ‘Retinal blood vessel segmentation using line operators and support vector classification’, IEEE Trans. Med. Imaging, 2007, 26, (10), pp. 13571365.
    14. 14)
      • 14. Becker, C., Rigamonti, R., Lepetit, V., et al: ‘Supervised feature learning for curvilinear structure segmentation’. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Berlin, Heidelberg, September, 2013, pp. 526533.
    15. 15)
      • 15. Sinthanayothin, C., Boyce, J.F., Cook, H.L., et al: ‘Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images’, Br. J. Ophthalmol., 1999, 83, (8), pp. 902910.
    16. 16)
      • 16. Zhu, C., Zou, B., Xiang, Y., et al: ‘An ensemble retinal vessel segmentation based on supervised learning in fundus images’, Chin. J. Electron., 2016, 25, (3), pp. 503511.
    17. 17)
      • 17. Staal, J., Abràmoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    18. 18)
      • 18. Soares, J.V., Leandro, J.J., Cesar, R.M., et al: ‘Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12141222.
    19. 19)
      • 19. Lam, B.S., Gao, Y., Liew, A.W.C.: ‘General retinal vessel segmentation using regularization-based multiconcavity modeling’, IEEE Trans. Med. Imaging, 2010, 29, (7), pp. 13691381.
    20. 20)
      • 20. Joshi, V.S., Reinhardt, J.M., Garvin, M.K., et al: ‘Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks’, PLoS ONE, 2014, 9, (2), p. e88061.
    21. 21)
      • 21. Al-Diri, B., Hunter, A., Steel, D.: ‘An active contour model for segmenting and measuring retinal vessels’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 14881497.
    22. 22)
      • 22. Zhang, J., Cui, Y., Jiang, W., et al: ‘Blood vessel segmentation of retinal images based on neural network’, Int. Conf. Image and Graphics, Cham, August, 2015, pp. 1117.
    23. 23)
      • 23. Lupascu, C.A., Tegolo, D.: ‘Automatic unsupervised segmentation of retinal vessels using self-organizing maps and K-means clustering’, CIBB, September, 2010, pp. 263274.
    24. 24)
      • 24. Oliveira, W.S., Teixeira, J.V., Ren, T.I., et al: ‘Unsupervised retinal vessel segmentation using combined filters’, PLoS ONE, 2016, 11, (2), p. e0149943.
    25. 25)
      • 25. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: ‘Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    26. 26)
      • 26. Mendonca, A.M., Campilho, A: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12001213.
    27. 27)
      • 27. Zana, F., Klein, J.C.: ‘Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation’, IEEE Trans. Image Process., 2001, 10, (7), pp. 10101019.
    28. 28)
      • 28. Palomera-Pérez, M.A., Martinez-Perez, M.E., Benítez-Pérez, H., et al: ‘Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (2), pp. 500506.
    29. 29)
      • 29. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., et al: ‘Segmentation of blood vessels from red-free and fluorescein retinal images’, Med. Image Anal., 2007, 11, (1), pp. 4761.
    30. 30)
      • 30. Fraz, M.M., Barman, S.A., Remagnino, P., et al: ‘An approach to localize the retinal blood vessels using bit planes and centerline detection’, Comput. Methods Programs Biomed., 2012, 108, (2), pp. 600616.
    31. 31)
      • 31. Bankhead, P., Scholfield, C.N., McGeown, J.G., et al: ‘Fast retinal vessel detection and measurement using wavelets and edge location refinement’, PLoS ONE, 2012, 7, (3), p. e32435.
    32. 32)
      • 32. Zhao, Y., Liu, Y., Wu, X., et al: ‘Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase’, PLoS ONE, 2015, 10, (4), p. e0122332.
    33. 33)
      • 33. Rafael, C., Richard, E.: ‘Woods Gonzalez, digital image processing’(Prentice Hall Press, 2002, 2002 edn.), ISBN 0-201-18075-8.
    34. 34)
      • 34. Pizer, S.M., Amburn, E.P., Austin, J.D., et al: ‘Adaptive histogram equalization and its variations’, Comput. Vis. Graph. Image Process., 1987, 39, (3), pp. 355368.
    35. 35)
      • 35. Zuiderveld, K.Contrast limited adaptive histogram equalization’, in ‘Graphics gems IV’ (Academic Press Professional), pp. 474485.
    36. 36)
      • 36. Pisano, E.D., Zong, S., Hemminger, B.M., et al: ‘Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms’, J. Digit. Imaging, 1998, 11, (4), pp. 193200.
    37. 37)
      • 37. Truc, P.T., Khan, M.A., Lee, Y.K., et al: ‘Vessel enhancement filter using directional filter bank’, Comput. Vis. Image Underst., 2009, 113, (1), pp. 101112.
    38. 38)
      • 38. Abramoff, M.D., Niemeijer, M., Viergever, M.A., et al: ‘DRIVE: digital retinal images for vessel extraction’, 2004. http://www.isi.uu.nl/Research/Databases/DRIVE/.
    39. 39)
      • 39. Marín, D., Aquino, A., Gegúndez-Arias, M.E., et al: ‘A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features’, IEEE Trans. Med. Imaging, 2011, 30, (1), pp. 146158.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0457
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0457
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address