Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multiscale adaptive regularisation Savitzky–Golay method for speckle noise reduction in ultrasound images

Speckle noise is one of the major artefacts in ultrasound images. The denoising faces the trade-off between noise suppression and structural preservation. In this study, multiscale adaptive regularisation Savitzky–Golay (MARSG) method, the new filter for removing speckle noise, is proposed. The proposed method combines the benefit of the multiscale analysis and the outstanding noise removing capability of Savitzky–Golay (SG) filter. The Laplacian pyramid is employed to separate an image into the noise, texture and object layers. Adaptive regularisation Savitzky–Golay (ARSG) filter is developed as the denoising filter in the noise and the texture layers. The denoising of the ARSG filter is adaptively adjusted in order to preserve the edges of objects in the image. The experiments on the synthetic and ultrasound images demonstrated that MARSG method offered better balance between noise removal and structural preservation than non-linear multiscale wavelet diffusion, feature-enhanced speckle reduction and regularised SG filter.

References

    1. 1)
      • 28. Fattal, R., Agrawala, M., Rusinkiewicz, S.: ‘Multiscale shape and detail enhancement from multi-light image collections’. ACM SIGGRAPH 2007 Papers, ser. SIGGRAPH ‘07, New York, NY, USA, 2007.
    2. 2)
      • 18. Taylor, J.R.B., Chan 1, J.M., Thomas, G.: ‘Wavelet-based blind deconvolution of near-field ultrasound scans’, IET Image Process., 2015, 9, (8), pp. 672679.
    3. 3)
      • 32. Savitzky, A., Golay, M.J.E.: ‘Smoothing and differentiation of data by simplified least squares procedures’, Anal. Chem., 1964, 36, (8), pp. 16271639.
    4. 4)
      • 16. Fu, X., Wang, Y., Chen, L., et al: ‘Quantum-inspired hybrid medical ultrasound images despeckling method’, Electron. Lett., 2015, 51, (4), pp. 321323.
    5. 5)
      • 42. Molinari, F., Pattichis, C.S., Zeng, G., et al: ‘Completely automated multiresolution edge snapper – a new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-Institutional database’, IEEE Trans. Image Process., 2012, 21, (3), pp. 12111222.
    6. 6)
      • 15. Andria, G., Attivissimo, F., Lanzolla, A.M.L., et al: ‘A suitable threshold for speckle reduction in ultrasound images’, IEEE Trans. Instrum. Meas., 2013, 62, (8), pp. 22702279.
    7. 7)
      • 29. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    8. 8)
      • 4. Park, J.M., Song, W.J., Pearlman, W.A.: ‘Speckle filtering of sar images based on adaptive windowing’, IEEE Proc. Vis. Image Signal Process., 1999, 146, (4), pp. 191197.
    9. 9)
      • 39. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI-8, (6), pp. 679698.
    10. 10)
      • 26. Steidl, G., Weickert, J., Brox, T., et al: ‘On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides’, SIAM J. Numer. Anal., 2004, 42, (2), pp. 686713.
    11. 11)
      • 22. Wang, W., Qin, J., Chui, Y.P., et al: ‘A multiresolution framework for ultrasound image segmentation by combinative active contours’. 2013 35th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), July 2013, pp. 11441147.
    12. 12)
      • 14. Lee, M.S., Yen, C.L., Ueng, S.K.: ‘Speckle reduction with edges preservation for ultrasound images: using function spaces approach’, IET Image Process., 2012, 6, (7), pp. 813821.
    13. 13)
      • 9. Toonkum, P., Boonvisut, P., Chinrungrueng, C.: ‘Real-time speckle reduction of ultrasound images based on regularized Savitzky–Golay filters’. 2nd Int. Conf. Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008, May 2008, pp. 23112314.
    14. 14)
      • 20. Zhang, F., Yoo, Y.M., Kim, Y., et al: ‘Multiscale nonlinear diffusion and shock filter for ultrasound image enhancement’. 2006 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR'06), 2006, vol. 2, pp. 19721977.
    15. 15)
      • 41. Molinaria, F., Zengb, G., Suri, J.S.: ‘A state of the art review on intima–media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound’, Comput. Methods Programs Biomed., 2010, 100, (3), pp. 201221.
    16. 16)
      • 2. Lamont, D., Parker, L., White, M., et al: ‘Risk of cardiovascular disease measured by carotid intima-media thickness at age 49–51: lifecourse study’, Br. Med. J., 2000, 320, (7230), pp. 273278.
    17. 17)
      • 23. Kang, J., Lee, J.Y., Yoo, Y.: ‘A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound b-mode imaging’, IEEE Trans. Biomed. Eng., 2016, 63, (6), pp. 11781191.
    18. 18)
      • 7. Bamber, J., Daft, C.: ‘Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images’, Ultrasonics, 1986, 24, (1), pp. 4144.
    19. 19)
      • 24. Burt, P., Adelson, E.: ‘The Laplacian pyramid as a compact image code’, IEEE Trans. Commun., 1983, 31, (4), pp. 532540.
    20. 20)
      • 33. Chinrungrueng, C., Suvichakorn, A.: ‘Fast edge-preserving noise reduction for ultrasound images’, IEEE Trans. Nucl. Sci., 2001, 48, (3), pp. 849854.
    21. 21)
      • 25. Daubechies, I.: ‘The wavelet transform, time-frequency localization and signal analysis’, IEEE Trans. Inf. Theory, 1990, 36, (5), pp. 9611005.
    22. 22)
      • 36. Goldberg, M., Sun, H.: ‘Image sequence coding using vector quantization’, IEEE Trans. Commun., 1986, 34, (7), pp. 703710.
    23. 23)
      • 40. Spencer, M.P., Reid, J.M.: ‘Quantitation of carotid stenosis with continuous-wave (c-w) Doppler ultrasound’, Stroke, 1979, 10, (3), pp. 326330.
    24. 24)
      • 19. Zhang, F., Yoo, Y.M., Koh, L.M., et al: ‘Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction’, IEEE Trans. Med. Imaging, 2007, 26, (2), pp. 200211.
    25. 25)
      • 11. Yue, Y., Croitoru, M.M., Bidani, A., et al: ‘Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images’, IEEE Trans. Med. Imaging, 2006, 25, (3), pp. 297311.
    26. 26)
      • 13. Amirmazlaghani, M., Amindavar, H.: ‘Wavelet domain Bayesian processor for speckle removal in medical ultrasound images’, IET Image Process., 2012, 6, (5), pp. 580588.
    27. 27)
      • 8. Loupas, T., McDicken, W., Allan, P.: ‘An adaptive weighted median filter for speckle suppression in medical ultrasonic images’, IEEE Trans. Circ. Syst., 1989, 36, (1), pp. 129135.
    28. 28)
      • 5. You, Y.L., Kaveh, M.: ‘Fourth-order partial differential equations for noise removal’, IEEE Trans. Image Process., 2000, 9, (10), pp. 17231730.
    29. 29)
      • 6. Yu, Y., Acton, S.: ‘Speckle reducing anisotropic diffusion’, IEEE Trans. Image Process., 2002, 11, (11), pp. 12601270.
    30. 30)
      • 12. Rabbani, H., Vafadust, M., Abolmaesumi, P., et al: ‘Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors’, IEEE Trans. Biomed. Eng., 2008, 55, (9), pp. 21522160.
    31. 31)
      • 35. Eltoft, T.: ‘Modeling the amplitude statistics of ultrasonic images’, IEEE Trans. Med. Imaging, 2006, 25, (2), pp. 229240.
    32. 32)
      • 37. Wang, Z., Bovik, A., Sheikh, H., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    33. 33)
      • 30. Osher, S., Rudin, L.I.: ‘Feature-oriented image enhancement using shock filters’, SIAM J. Numer. Anal., 1990, 24, (4), pp. 919940.
    34. 34)
      • 10. Makowski, M.: ‘Minimized speckle noise in lens-less holographic projection by pixel separation’, Opt. Express, 2013, 21, (24), pp. 2920529229.
    35. 35)
      • 31. Weickert, J.: ‘Multiscale texture enhancement’. Computer Analysis of Images and Patterns, Berlin, Germany, 1995 (LNCS, 970), pp. 230237.
    36. 36)
      • 21. Zhang, D., Nishimura, T.H.: ‘Medical image noise reduction using radon transform and Walsh list in Laplacian pyramid domain’. 2009 IEEE 13th Int. Symp. Consumer Electronics, May 2009, pp. 756760.
    37. 37)
      • 3. Burckhardt, C.B.: ‘Speckle in ultrasound b-mode scans’, IEEE Trans. Sonics Ultrason., 1978, 25, (1), pp. 16.
    38. 38)
      • 34. Chen, Y., Yin, R., Flynn, P.J., et al: ‘Aggressive region growing for speckle reduction in ultrasound images’, Pattern Recognit. Lett., 2003, 24, (4–5), pp. 677691.
    39. 39)
      • 38. Varghese, J., Subash, S., Tairan, N.: ‘Fourier transform-based windowed adaptive switching minimum filter for reducing periodic noise from digital images’, IET Image Process., 2016, 10, (9), pp. 646656.
    40. 40)
      • 1. Hall, H.A., Bassiouny, H.S.: ‘Pathophysiology of carotid atherosclerosis. ‘Ultrasound and carotid bifurcation atherosclerosis’ (Springer London, London, 2012), pp. 2739.
    41. 41)
      • 27. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’. ACM SIGGRAPH 2008 Papers, ser. SIGGRAPH ‘08. 1 plus 0.5 minus 0.4, New York, NY, USA, 2008, pp. 67:167:10.
    42. 42)
      • 17. Gupta, D., Anand, R.S., Tyagi, B.: ‘Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain’, IET Image Process., 2015, 9, (2), pp. 107117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0391
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0391
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address