access icon free Perceptual hash algorithm-based adaptive GOP selection algorithm for distributed compressive video sensing

Distributed compressive video sensing (DCVS) is a novel video coding technique that shifts sophisticated motion estimation and compensation from the encoder to the decoder and is suitable for resource-limited communication, namely wireless video sensor networks (WVSNs). In DCVS, key frames serve as the reference for subsequent non-key frames in a given group of pictures (GOP). However, in fast-motion sequences, e.g. scene-changing sequences, a fixed GOP size can cause inaccuracy in the selection of reference key frames. The difference in the peak signal-to-noise ratio between key frames and non-key frames caused by this inaccuracy appears as flicker in the decoded video, negatively affecting the quality of experience. To address this problem, the authors present a perceptual hash algorithm-based adaptive GOP selection algorithm for DCVS and a novel allocation model for the frame sampling rate. In addition, the authors define several indexes to assess the degree of flicker in decoded video. The experimental results demonstrate that the proposed algorithm reduces the degree of flicker in fast-motion sequences by 40–60% relative to the state-of-the-art architecture, while also outperforming other adaptive GOP selection strategies.

Inspec keywords: video coding; image sequences; motion compensation; resource allocation; quality of experience; motion estimation; compressed sensing

Other keywords: frame sampling rate; group of pictures; fast-motion sequences; WVSNs; subsequent nonkey frames; motion compensation; novel allocation model; reference key frame selection; peak signal-to-noise ratio; fixed GOP size; quality of experience; distributed compressive video sensing; encoder; resource-limited communication; motion estimation; DCVS; adaptive GOP selection algorithm; decoder; scene-changing sequences; wireless video sensor networks; video coding technique; perceptual hash algorithm

Subjects: Image and video coding; Video signal processing

References

    1. 1)
      • 14. Kuo, Y., Wu, K., Chen, J.: ‘A scheme for distributed compressed video sensing based on hypothesis set optimization techniques’, Multidimen. Syst. Signal Process., 2017, 28, (1), pp. 129148.
    2. 2)
      • 26. Poobalasingam, V., Izquierdo, E.: ‘Steadiness analysis for optimal GOP size selection in HEVC’. IEEE Int. Conf. Image Processing, 2016, pp. 799803.
    3. 3)
      • 11. Mun, S., Fowler, J.E.: ‘Residual reconstruction for block-based compressed sensing of video’. Data Compression Conf. (DCC), 2011, pp. 183192.
    4. 4)
      • 9. Do, T.T., Chen, Y., Nguyen, D.T., et al: ‘Distributed compressed video sensing’. 2009 16th IEEE Int. Conf. Image Processing (ICIP), 2009, pp. 13931396.
    5. 5)
      • 29. ‘looks, like it’. Available at http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html, accessed 5 April 2017.
    6. 6)
      • 3. Lappalainen, V., Hallapuro, A., Hamalainen, T.: ‘Complexity of optimized H.26L video decoder implementation’, IEEE Trans. Circ. Syst. Video Technol., 2003, 13, (7), pp. 717725.
    7. 7)
      • 21. Yokoyama, Y.: ‘Adaptive GOP structure selection for real-time MPEG-2 video encoding’. Proc. Int. Conf. Image Processing, 2000., 2002, vol. 2, pp. 832835.
    8. 8)
      • 6. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    9. 9)
      • 22. Min, K.Y., Lim, W., Nam, J., et al: ‘Distributed video coding supporting hierarchical GOP structures with transmitted motion vectors’, Eurasip J. Image Video Process., 2015, 1, pp. 114.
    10. 10)
      • 8. Landau, H.J.: ‘Sampling, data transmission, and the Nyquist rate’, Proc. IEEE, 1967, 55, (10), pp. 17011706.
    11. 11)
      • 18. Chen, H.W., Kang, L.W., Lu, C.S.: ‘Dynamic measurement rate allocation for distributed compressive video sensing’. Int. Society for Optics and Photonics Visual Communications and Image Processing, 2010, 2010, pp. 77440I77440I-10.
    12. 12)
      • 17. Liu, Z., Wang, A.H., Zeng, B., et al: ‘Distributed compressive video sensing with adaptive measurements based on structural similarity’, Chin. J. Electron., 2013, 22, (3), pp. 594598.
    13. 13)
      • 10. Tramel, E.W., Fowler, J.E.: ‘Video compressed sensing with multihypothesis’. Data Compression Conf. (DCC), 2011, pp. 193202.
    14. 14)
      • 16. Kang, L.W., Lu, C.S.: ‘Distributed compressive video sensing’. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2009, pp. 11691172.
    15. 15)
      • 27. Candes, E.J., Tao, T.: ‘Decoding by linear programming’, IEEE Trans. Inf. Theory, 2005, 51, (12), pp. 42034215.
    16. 16)
      • 23. Liu, Z.G., Peng, Y.H., Yang, Y.: ‘An adaptive GOP structure selection for HAAR-like MCTF encoding based on mutual information’, Multimedia Tools Applic., 2009, 43, (1), pp. 2543.
    17. 17)
      • 2. Rec, I. H. 264: ‘Advanced video coding for generic audio visual services’, 2005.
    18. 18)
      • 19. Ming, H.W., Rui, C., Ran, L., et al: ‘Dynamic global-principal component analysis sparse representation for distributed compressive video sampling’, China Commun., 2013, 10, (5), pp. 2029.
    19. 19)
      • 5. Girod, B., Aaron, A.M., Rane, S., et al: ‘Distributed video coding’, Proc. IEEE, 2005, 93, (1), pp. 7183.
    20. 20)
      • 7. Jerri, A.J.: ‘The Shannon sampling theorem—its various extensions and applications: a tutorial review’, Proc. IEEE, 1977, 65, (11), pp. 15651596.
    21. 21)
      • 25. Midya, A., Sengupta, S.: ‘Scene transition based adaptive GOP selection for increasing coding efficiency & resiliency’. IEEE Int. Conf. Informatics, Electronics & Vision, 2012, pp. 770773.
    22. 22)
      • 20. Kodavalla, V.K.: ‘Challenges in practical deployment of distributed video coding’. Int. Conf. Microelectronics, Computing and Communications (MicroCom), 2016, pp. 16.
    23. 23)
      • 15. Zheng, S., Chen, J., Kuo, Y.: ‘An improved distributed compressed video sensing scheme in reconstruction algorithm’, Multimedia Tools Applic., 2017, 2, pp. 118.
    24. 24)
      • 31. Choi, B.T., Lee, S.H., Ko, S.J.: ‘New frame rate up-conversion using bi-directional motion estimation’, IEEE Trans. Consumer Electron., 2000, 46, (3), pp. 603609.
    25. 25)
      • 1. Pereira, F., Torres, L., Guillemot, C., et al: ‘Distributed video coding: selecting the most promising application scenarios’, Signal Process. Image Commun., 2008, 23, (5), pp. 339352.
    26. 26)
      • 30. Gan, L., Do, T.T., Tran, T.D.: ‘Fast compressive imaging using scrambled block Hadamard ensemble’. 16th European Signal Processing Conf., 2008, pp. 15.
    27. 27)
      • 13. Chen, J., Wang, N., Xue, F., et al: ‘Distributed compressed video sensing based on the optimization of hypothesis set update technique’, Multimedia Tools Applic., 2017, 76, (14), pp. 1573515754.
    28. 28)
      • 4. Wyner, A., Ziv, J.: ‘The rate-distortion function for source coding with side information at the decoder’, IEEE Trans. Inf. Theory, 1976, 22, (1), pp. 110.
    29. 29)
      • 28. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: ‘Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 586597.
    30. 30)
      • 24. Matsuoka, S., Morigami, Y., Song, T., et al: ‘Coding efficiency improvement with adaptive GOP size selection for H.264/SVC’, Int. J. Innovative Computing Information Control IJICIC, 2009, 5, (11), pp. 356356.
    31. 31)
      • 12. Fowler, J.E., Sungkwang, M., Eric, W.T.: ‘Block- based compressed sensing of images and video’, Found. Trends Signal Process., 2012, 4, (4), pp. 297416.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0354
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0354
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading