http://iet.metastore.ingenta.com
1887

Mesh-free approach for enhancement of mammograms

Mesh-free approach for enhancement of mammograms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Mammogram enhancement is a key step to detect breast cancer using digital mammogram. The present study investigates mesh-free radial basis function (RBF) collocation method to solve linear diffusion equation for image enhancement of mammograms. The proposed algorithm is compared with the mesh-based finite difference method as well as other existing enhancement methods such as unsharp masking, histogram equalisation, and contrast limited adaptive histogram equalisation. Specifically, figure-of-merits with emphasis on image contrast and computational time are assessed and compared with different image processing techniques. The proposed algorithm has been applied towards the enhancement of all 322 sample mammogram images of Mini-Mammographic Image Analysis Society and randomly selected 300 sample images from Digital Database for Screening Mammography databases. Finally, mean and standard deviation of contrast improvement index and peak signal-to-noise ratio have been estimated and presented. The outcome of this study indicates that the mesh-free-based RBF collocation method proves to be a computationally efficient and valuable contrast enhancement technique in an area of mammography.

References

    1. 1)
      • 1. Ganesan, K., Acharya, U.R., Chua, C.K., et al: ‘Computer-aided breast cancer detection using mammograms: a review’, IEEE Rev. Biomed. Eng., 2013, 6, pp. 7798.
    2. 2)
      • 2. Dhawan, A.P., Buelloni, G., Gordon, R.: ‘Enhancement of mammographic features by optimal adaptive neighborhood image processing’, IEEE Trans. Med. Imaging, 1986, 5, (1), pp. 815.
    3. 3)
      • 3. Cheng, H.D., Xu, H.: ‘A novel fuzzy logic approach to mammogram contrast enhancement’, Inf. Sci., 2002, 148, pp. 167184.
    4. 4)
      • 4. Petrick, N., Chan, H.P., Sahiner, B., et al: ‘An adaptive density weighted contrast enhancement filter for mammographic breast mass detection’, IEEE Trans. Med. Imaging, 1996, 15, (1), pp. 5967.
    5. 5)
      • 5. Kim, J.K., Park, J.M., Songs, K.S., et al: ‘Adaptive mammographic image enhancement using first derivative and local statistics’, IEEE Trans. Med. Imaging, 1997, 16, (5), pp. 495502.
    6. 6)
      • 6. Mencattini, A., Salmeri, M., Lojacono, R., et al: ‘Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing’, IEEE Trans. Instrument. Meas., 2008, 57, (7), pp. 14221430.
    7. 7)
      • 7. Alvarez, L., Lions, P.L., Morel, J.M.: ‘Image selective smoothing and edge detection by nonlinear diffusion II’, SIAM J. Numer. Anal., 1992, 29, pp. 182193.
    8. 8)
      • 8. Weickert, J.: ‘Anisotropic diffusion in image processing’ (Teubner, Stuttgart, 1998), vol. 1, pp. 5960.
    9. 9)
      • 9. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: ‘Efficient and reliable schemes for nonlinear diffusion filtering’, IEEE Trans. Imaging Process., 1998, 7, (3), pp. 398410.
    10. 10)
      • 10. Perona, P., Malik, J.: ‘Scale space and edge detection using anisotropic diffusion’. Proc. IEEE Computer Society, Workshop on Computer Vision IEEE Computer Society Press, Washington, December 1987, pp. 629639.
    11. 11)
      • 11. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes active contour models’, Int. J. Computer Vis., 1987, 1, (4), pp. 321331.
    12. 12)
      • 12. Oshar, S., Sethian, J.: ‘Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations’, J. Computer Phys., 1988, 79, (1), pp. 1249.
    13. 13)
      • 13. Logan, J.D.: ‘Partial differential equations in the life sciences’. Applied Partial Differential Equations, New York, 2004, pp. 172196.
    14. 14)
      • 14. Kristensen, D.: ‘Estimation of partial differential equations with applications in finance’, J. Econ., 2008, 144, (2), pp. 392408.
    15. 15)
      • 15. Koenderink, J.: ‘The structure of images’, Biol. Cyber., 1984, 50, (5), pp. 363370.
    16. 16)
      • 16. Witkin, A.P.: ‘Scale-space filtering’. US Patent4658372, April 1987.
    17. 17)
      • 17. Ames, W.F.: ‘Numerical methods for partial differential equations’ (Academic Press, 2014, 3rd edn.).
    18. 18)
      • 18. Chen, W., Fu, Z-J., Chen, C.S.: ‘Recent advances in radial basis function collocation methods’ (Springer-Verlag, Heidelberg, 2014).
    19. 19)
      • 19. Fasshauer, G.E.: ‘Meshfree approximation methods with MATLAB’ (World Scientific, 2007).
    20. 20)
      • 20. Hardy, R.L.: ‘Multiquadric equations of topography and other irregular surfaces’, J. Geophys. Res., 1971, 76, (8), pp. 19051915.
    21. 21)
      • 21. Duchon, J.: ‘Splines minimizing rotation-invariant semi-norms in Sobolev spaces’. in constructive theory of functions of several variables’ (Springer, Berlin, 1977).
    22. 22)
      • 22. Franke, R.: ‘Scattered data interpolation: tests of some method’, Math. Comput., 1982, 38, (157), pp. 181200.
    23. 23)
      • 23. Kansa, E.J.: ‘Multiquadrics – a scattered data approximation scheme with applications to computational fluid-dynamics – I surface approximations and partial derivative estimates’, Comput. Math. Appl., 1990, 19, (8), pp. 127145.
    24. 24)
      • 24. Kansa, E.J.: ‘Multiquadrics – a scattered data approximation scheme with applications to computational fluid-dynamics – II solutions to parabolic, hyperbolic and elliptic partial differential equations’, Comput. Math. Appl., 1990, 19, (8–9), pp. 147161.
    25. 25)
      • 25. Wu, Z., Schaback, R.: ‘Local error estimates for radial basis function interpolation of scattered data’, IMA J. Numer. Anal., 1993, 13, pp. 1327.
    26. 26)
      • 26. Rippa, S.: ‘An algorithm for selecting a good value for the parameter c in radial basis function interpolation’, Adv. Comput. Math., 1999, 11, pp. 193210.
    27. 27)
      • 27. Fornberg, B., Wright, G.: ‘Stable computation of multi quadratic interpolants for all values of the shape parameter’, Comput. Math. Appl., 2004, 47, pp. 497523.
    28. 28)
      • 28. Sarra, S.A., Kansa, E.J.: ‘Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations’, Adv. Comput. Mech., 2009, 2, (2).
    29. 29)
      • 29. Suckling, J., Parker, J., Dance, D., et al: ‘The mammographic image analysis society digital mammogram database’, Excerpta Med. Int. Congr. Ser., 1994, 1069, pp. 375378.
    30. 30)
      • 30. Rose, C., Turi, D., Williams, A., et al: ‘Web services for the DDSM and digital mammography research’. Digital Mammography’, 2006, pp. 376383.
    31. 31)
      • 31. Panetta, K., Zhou, Y., Agaian, S., et al: ‘Nonlinear unsharp masking for mammogram enhancement’, IEEE Trans. Inf. Tech. Biomed., 2011, 15, (6), pp. 918928.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0326
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address