access icon free Modified simultaneous iterative reconstruction technique for fast, high-quality CT reconstruction

Recent advances in computational power have made it possible to use iterative reconstruction (IR) algorithms in clinics for computed tomographic (CT) imaging. Many researchers prefer IR methods to analytical methods because they reduce radiation, image noise, and artefacts. Simultaneous Iterative Reconstruction Technique (SIRT) reduces the number of views needed for CT reconstruction. However, reconstructed images include ray artefacts that can make diagnosis difficult. This study proposes a modified IR algorithm for fast, high-quality CT reconstruction. The modified method incorporates geometric non-linear diffusion in the reconstruction estimate to minimise ray artefacts. This method also converges the algorithms into global minima much faster than other methods, using the minimum number of iterations. To meet the high computational demand of improved IR algorithms, a graphics processing unit was used in this study. The authors expect that the proposed technique can be used to reconstruct high-quality CT images faster and with minimal iterations.

Inspec keywords: computerised tomography; image reconstruction; medical image processing

Other keywords: computed tomographic imaging; iterative reconstruction algorithms; geometric nonlinear diffusion; high-quality CT reconstruction; CT reconstruction; modified simultaneous iterative reconstruction technique

Subjects: Optical, image and video signal processing; Medical and biomedical uses of fields, radiations, and radioactivity; health physics; Biomedical measurement and imaging; Computer vision and image processing techniques; Biology and medical computing; Patient diagnostic methods and instrumentation

References

    1. 1)
      • 8. Furterer, S.L.: ‘Appropriate use of CT scan in the emergency department’, in ‘Lean six sigma case studies in the healthcare enterprise’ (Springer London, London, 2014), pp. 203228.
    2. 2)
      • 30. Chan, T., Marquina, A., Mulet, P.: ‘High-order total variation-based image restoration’, SIAM J. Sci. Comput., 2000, 22, (2), pp. 503516.
    3. 3)
      • 35. Zhang, F., Yoo, Y.M., Koh, L.M., et al: ‘Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction’, IEEE Trans. Med. Imaging, 2007, 26, (2), pp. 200211.
    4. 4)
      • 23. Chunhua, M., Gu, X., Choi, D., et al: ‘GPU-based ultrafast IMRT plan optimization’, Phys. Med. Biol., 2009, 54, (21), pp. 65656573.
    5. 5)
      • 10. Kerl, J.M., Bauer, R.W., Maurer, T.B., et al: ‘Dose levels at coronary CT angiography—A comparison of dual energy-, dual source- and 16-slice CT’, Eur. Radiol., 2011, 21, (3), pp. 530537.
    6. 6)
      • 4. Smith-Bindman, R.: ‘Is computed tomography safe?’, N. Engl. J. Med., 2010, 363, (1), pp. 14.
    7. 7)
      • 2. Xu, J., Mahesh, M., Tsui, B.M.W.: ‘Is iterative reconstruction ready for MDCT?’, J. Am. Coll. Radiol., 2009, 6, (4), pp. 274276.
    8. 8)
      • 18. Chen, Y., Gao, D., Nie, C., et al: ‘Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior’, Comput. Med. Imaging Graph., 2009, 33, (7), pp. 495500.
    9. 9)
      • 20. Qi, H., Chen, Z., Zhou, L.: ‘CT image reconstruction from sparse projections using adaptive TpV regularization’, Comput. Math. Methods Med., 2015, pp. 18.
    10. 10)
      • 33. Lu, Y., Wang, W., Chen, S., et al: ‘Accelerating algebraic reconstruction using CUDA-enabled GPU’. Computer Graphics, Imaging and Visualization, Sixth Int. Conf., IEEE, 2009, pp. 480485.
    11. 11)
      • 28. Gregor, J., Benson, T.: ‘Computational analysis and improvement of SIRT’, IEEE Trans. Med. Imaging, 2008, 27, (7), pp. 918924.
    12. 12)
      • 39. Kak, A.C., Slaney, M.: ‘Principles of computerized tomographic imaging’, Med. Phys., 29, 2002, p. 107.
    13. 13)
      • 15. Sato, J., Akahane, M., Inano, S., et al: ‘Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography’, Jpn J. Radiol., 2012, 30, (2), pp. 146153.
    14. 14)
      • 11. Fleischmann, D., Boas, F.E.: ‘Computed tomography—old ideas and new technology’, Eur. Radiol., 2011, 21, (3), pp. 510517.
    15. 15)
      • 43. Yu, H., Wang, G.: ‘Compressed sensing based interior tomography’, Phys. Med. Biol., 2009, 54, (9), pp. 27912805.
    16. 16)
      • 32. Pan, Y., Whitaker, R., Cheryauka, A., et al: ‘TV-regularized iterative image reconstruction on a mobile C-ARM CT’. SPIE Medical Imaging, Int. Society for Optics and Photonics, 2010, p. 76222L.
    17. 17)
      • 14. Gervaise, A., Osemont, B., Lecocq, S., et al: ‘CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT’, Eur. Radiol., 2012, 22, (2), pp. 295301.
    18. 18)
      • 41. Byrne, C.: ‘A unified treatment of some iterative algorithms in signal processing and image reconstruction’, Inverse Probl., 2003, 20, (1), pp. 103120.
    19. 19)
      • 24. Xuejun, G., Pan, H., Liang, Y., et al: ‘Implementation and evaluation of various demons deformable image registration algorithms on a GPU’, Phys. Med. Biol., 2010, 55, (1), pp. 207219.
    20. 20)
      • 36. Mittal, D., Kumar, V., Saxena, S. C., et al: ‘Enhancement of the ultrasound images by modified anisotropic diffusion method’, Med. Biol. Eng. Comput., 2010, 48, (12), pp. 12811291.
    21. 21)
      • 19. Chen, G.H., Tang, J., Leng, S.: ‘Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets’, Med. Phys., 2008, 35, (2), pp. 660663.
    22. 22)
      • 42. Gach, H.M., Tanase, C., Boada, F.: ‘2D & 3D Shepp-Logan phantom standards for MRI’. Systems Engineering, 19th Int. Conf. on IEEE, 2008, pp. 521526.
    23. 23)
      • 17. Chen, Y., Ma, J., Feng, Q., et al: ‘Nonlocal prior Bayesian tomographic reconstruction’, J. Math. Imaging Vis., 2008, 30, (2), pp. 133146.
    24. 24)
      • 3. Brenner, D.J., Hall, E.J.: ‘Current concepts–computed tomography–an increasing source of radiation exposure’, N. Engl. J. Med., 2007, 357, (22), pp. 22772284.
    25. 25)
      • 31. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    26. 26)
      • 27. Gilbert, P.: ‘Iterative methods for the three-dimensional reconstruction of an object from projections’, J. Theor. Biol., 1972, 36, (1), pp. 105117.
    27. 27)
      • 1. Kak, A.C., Slaney, M.: ‘Principles of computerized tomographic imaging’, in O'Malley, R.E. (Ed.) ‘Classics in applied mathematics, xiv’ (Society for Industrial and Applied Mathematics, Philadelphia, 2001), pp. 13.
    28. 28)
      • 29. Dobson, D.C., Santosa, F.: ‘Recovery of blocky images from noisy and blurred data’, SIAM J. Appl. Math., 1996, 56, (4), pp. 11811198.
    29. 29)
      • 25. Xu, F., Mueller, K.: ‘Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware’, IEEE Trans. Nucl. Sci., 2005, 52, (3), pp. 654663.
    30. 30)
      • 21. Kim, H., Chen, J., Wang, A., et al: ‘Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction’, Phys. Med. Biol., 2016, 61, (18), pp. 68786891.
    31. 31)
      • 38. Wolf, D., Lubk, A., Lichte, H.: ‘Weighted simultaneous iterative reconstruction technique for single-axis tomography’, Ultramicroscopy, 2014, 136, pp. 1525.
    32. 32)
      • 26. Chen, D., Goris, B., Bleichrodt, F., et al: ‘The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections’, Ultramicroscopy, 2014, 147, pp. 137148.
    33. 33)
      • 40. Gordon, R., Bender, R., Herman, G.T.: ‘Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography’, J. Theor. Biol., 1970, 29, (3), pp. 471IN1477476IN2481.
    34. 34)
      • 45. Zhou, W., Bovik, A.C., Sheikh, H. R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    35. 35)
      • 46. Abdou, I.E., Pratt, W.K.: ‘Quantitative design and evaluation of enhancement/thresholding edge detectors’, Proc. IEEE, 1979, 67, (5), pp. 753763.
    36. 36)
      • 5. Hall, E.J., Brenner, D.J.: ‘Cancer risks from diagnostic radiology: the impact of new epidemiological data’, Br. J. Radiol., 2012, 85, (1020), pp. 13161317.
    37. 37)
      • 6. Smith-Bindman, R., Miglioretti, D.L., Johnson, , et al: ‘Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated healthcare systems’, 1996–2010. JAMA, 2012, 307, (22), pp. 24002409.
    38. 38)
      • 37. Michel-González, E., Cho, M.H., Lee, S.Y.: ‘Geometric nonlinear diffusion filter and its application to X-ray imaging’, Biomed. Eng. Online, 2011, 10, (47), pp. 116.
    39. 39)
      • 44. Mitra, D., Pan, H., Alhassen, F., et al: ‘Parallelization of iterative reconstruction algorithms in multiple modalities’. Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC), IEEE, 2014, pp. 15.
    40. 40)
      • 7. Lee, T.Y., Chhem, R.K.: ‘Impact of new technologies on dose reduction in CT’, Eur. J. Radiol., 2010, 76, (1), pp. 2835.
    41. 41)
      • 12. Nelson, R.C., Feuerlein, S., Boll, D.T.: ‘New iterative reconstruction techniques for cardiovascular computed tomography: How do they work, and what are the advantages and disadvantages?’, J. Cardiovasc. Comput. Tomogr., 2011, 5, (5), pp. 286292.
    42. 42)
      • 34. Oliveira, N., Mota, A.M., Matela, N., et al: ‘Dynamic relaxation in algebraic reconstruction technique (ART) for breast tomosynthesis imaging’, Comput. Methods Programs Biomed., 2016, 132, pp. 189196.
    43. 43)
      • 9. Macias, C.G., Sahouria, J.J.: ‘The appropriate use of CT: Quality improvement and clinical decision-making in pediatric emergency medicine’, Pediatr. Radiol., 2011, 41, (2), pp. 498504.
    44. 44)
      • 22. Fang, X., Klaus, M.: ‘Real-time 3D computed tomographic reconstruction using commodity graphics hardware’, Phys. Med. Biol., 2007, 52, (12), pp. 34053419.
    45. 45)
      • 16. Singh, S., Kalra, M.K., Gilman, , et al: ‘Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study’, Radiology, 2011, 259, (2), pp. 565573.
    46. 46)
      • 13. Funama, Y., Taguchi, K., Utsunomiya, D., et al: ‘Combination of a low tube voltage technique with the hybrid iterative reconstruction (iDose) algorithm at coronary CT angiography’, J. Comput.-Assist. Tomogr., 2011, 35, (4), pp. 480485.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0304
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading