access icon free Hot spot method for pedestrian detection using saliency maps, discrete Chebyshev moments and support vector machine

The increasing risks of border intrusions or attacks on sensitive facilities and the growing availability of surveillance cameras lead to extensive research efforts for robust detection of pedestrians using images. However, the surveillance of borders or sensitive facilities poses many challenges including the need to set up many cameras to cover the whole area of interest, the high bandwidth requirements for data streaming and the high-processing requirements. Driven by day and night capabilities of the thermal sensors and the distinguished thermal signature of humans, the authors propose a novel and robust method for the detection of pedestrians using thermal images. The method is composed of three steps: a detection which is based on a saliency map in conjunction with a contrast-enhancement technique, a shape description based on discrete Chebyshev moments and a classification step using a support vector machine classifier. The performance of the method is tested using two different thermal datasets and is compared with the conventional maximally stable extremal regions detector. The obtained results prove the robustness and the superiority of the proposed framework in terms of true and false positives rates and computational costs which make it suitable for low-performance processing platforms and real-time applications.

Inspec keywords: infrared imaging; pedestrians; temperature sensors; temperature measurement; video surveillance; cameras; image sensors; reliability; image classification; image enhancement; support vector machines

Other keywords: pedestrian detection; hot spot method; maximally stable extremal region detector; border intrusion; shape description; discrete Chebyshev moment; thermal signature; contrast-enhancement technique; data streaming; saliency map; surveillance camera; thermal sensor; image classification; thermal imaging; support vector machine classifier

Subjects: Image recognition; Knowledge engineering techniques; Computer vision and image processing techniques; Image sensors; Reliability; Thermal variables measurement

References

    1. 1)
      • 1. Davis, J.W., Keck, M.A.: ‘A two-stage template approach to person detection in thermal imagery’. Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTIONS, 2005), Breckenridge, CO, USA, January 2005, vol. 1, pp. 364369.
    2. 2)
      • 2. Torabi, A., Massé, G., Bilodeau, G.-A.: ‘An iterative integrated framework for thermal-visible image registration, sensor fusion, and people tracking for video surveillance applications’, Comput. Vis. Image Underst., 2012, 116, pp. 210221.
    3. 3)
      • 7. Davis, J., Sharma, V.: ‘Robust background-subtraction for person detection in thermal imagery’. IEEE Int. Workshop on Object Tracking and Classification beyond the Visible Spectrum, Washington, USA, 2004.
    4. 4)
      • 8. Freund, Y., Schapire, R.E.: ‘A decision-theoretic generalization of on-line learning and an application to boosting’. European Conf. Computational Learning Theory, Barcelona, Spain, 1995, pp. 2337.
    5. 5)
      • 11. Rudol, P., Doherty, P.: ‘Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery’. 2008 IEEE Aerospace Conf., Big Sky, MT, USA, 2008, pp. 18.
    6. 6)
      • 23. Karakasis, E.G., Papakostas, G.A., Koulouriotis, D.E., et al: ‘A unified methodology for computing accurate quaternion color moments and moment invariants’, IEEE Trans. Image Process., 2014, 23, (2), pp. 596611.
    7. 7)
      • 15. Ma, Y., Wu, X., Yu, G., et al: ‘Pedestrian detection and tracking from low-resolution unmanned aerial vehicle thermal imagery’, Sensors, 2016, 16, (4), p. 446.
    8. 8)
      • 24. Matas, J., Chum, O., Urban, M., et al: ‘Robust wide-baseline stereo from maximally stable extremal regions’, Image Vis. Comput., 2004, 22, (10), pp. 761767.
    9. 9)
      • 4. Davis, J.W., Sharma, V.: ‘Background-subtraction using contour-based fusion of thermal and visible imagery’, Comput. Vis. Image Underst., 2007, 106, (2), pp. 162182.
    10. 10)
      • 20. Pozo, J.M., Villa-Uriol, M.-C., Frangi, A.F.: ‘Efficient 3d geometric and Zernike moments computation from unstructured surface meshes’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (3), pp. 471484.
    11. 11)
      • 14. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    12. 12)
      • 16. Bouguet, J.-Y.: ‘Pyramidal implementation of the affine Lucas–Kanade feature tracker description of the algorithm’, Intel Corp., 2001, 5, (1-10), p. 4.
    13. 13)
      • 25. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: ‘A self-adjusting approach to change detection based on background word consensus’. 2015 IEEE Winter Conf. Applications of Computer Vision, Waikoloa, HI, USA, January 2015, pp. 990997.
    14. 14)
      • 19. Shu, H., Zhang, H., Chen, B., et al: ‘Fast computation of Tchebichef moments for binary and grayscale images’, IEEE Trans. Image Process., 2010, 19, (12), pp. 31713180.
    15. 15)
      • 12. Zhao, X., He, Z., Zhang, S., et al: ‘Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification’, Pattern Recognit., 2015, 48, (6), pp. 19471960.
    16. 16)
      • 5. Teutsch, M., Müller, T.: ‘Hot spot detection and classification in LWIR videos for person recognition’. SPIE Defense, Security, and Sensing, Baltimore, MA, USA, 2013, p. 87440F.
    17. 17)
      • 9. Wang, W., Zhang, J., Shen, C.: ‘Improved human detection and classification in thermal images’. 2010 IEEE Int. Conf. Image Processing, Hong Kong, China, 2010, pp. 23132316.
    18. 18)
      • 22. Karakasis, E., Bampis, L., Amanatiadis, A., et al: ‘Digital elevation model fusion using spectral methods’. 2014 IEEE Int. Conf. Imaging Systems and Techniques (IST) Proc., Santorini, Greece, 2014, pp. 340345.
    19. 19)
      • 17. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 2009, pp. 15971604.
    20. 20)
      • 21. Gao, X., Wang, Q., Li, X., et al: ‘Zernike-moment-based image super resolution’, IEEE Trans. Image Process., 2011, 20, (10), pp. 27382747.
    21. 21)
      • 18. Arodź, T., Kurdziel, M., Popiela, T.J., et al: ‘Detection of clustered microcalcifications in small field digital mammography’, Comput. Methods Programs Biomed., 2006, 81, (1), pp. 5665.
    22. 22)
      • 3. Vandone, A.: ‘Algorithms for infrared image processing’, 2011.
    23. 23)
      • 13. Yang, C., Liu, H., Liao, S., et al: ‘Pedestrian detection in thermal infrared image using extreme learning machine’. Proc. ELM-2014, Hangzhou, China, 2015, 2, pp. 3140.
    24. 24)
      • 6. Teutsch, M., Müller, T., Huber, M., et al: ‘Low resolution person detection with a moving thermal infrared camera by hot spot classification’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 2014, pp. 209216.
    25. 25)
      • 10. Jungling, K., Arens, M.: ‘Feature based person detection beyond the visible spectrum’. 2009 IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops, Miami, FL, USA, 2009, pp. 3037.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0221
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading