http://iet.metastore.ingenta.com
1887

Combined imaging matching method of side scan sonar images with prior position knowledge

Combined imaging matching method of side scan sonar images with prior position knowledge

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Side scan sonar (SSS) image matching plays an important role in underwater applications, such as combining images to form wide range relief images, underwater simultaneous location and mapping, and construction of images of underwater terrain and objects. Because there are differences between the imaging mechanisms of SSS images and optical images, current matching algorithms for optical images do not always work well for SSS images. This study proposes a combined image matching approach for SSS images. First, the images are preprocessed to remove some environmental effects. Second, feature points that are stable for affine transformations are extracted from the SSS matching images based on speeded-up robust features with prior position knowledge. Third, geometric correction is made by the random sample consensus. After that, a similarity calculation is performed. The proposed approach speeds up the matching process and improves its accuracy by combining feature points matching and similarity calculation. It reduces the mismatching rate and the computation requirement by estimating the location uncertainty with prior knowledge and reducing the searching regions for image matching. Experiments show that the matching algorithm takes less time and has greater reliability and accuracy than traditional algorithms.

References

    1. 1)
      • 1. Chen, E., Huang, W., Wang, W.H., et al: ‘Side scan sonar grid Map for unmanned underwater vehicle navigation’. OCEANS 2011, Waikoloa, HI, 2011, pp. 18.
    2. 2)
      • 2. Chavez, P.S., Isbrecht, J., Galanis, P., et al: ‘Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images’, Marine Geol., 2002, 181, (1-3), pp. 305315.
    3. 3)
      • 3. Kim, K., Neretti, N., Intrator, N.: ‘Mosaicing of acoustic camera images’, IEE Proc., Radar Sonar Navig., 2005, 152, pp. 263270.
    4. 4)
      • 4. Dura, E., Bell, J., Lane, D.: ‘Reconstruction of textured seafloors from side-scan sonar images’, IEE Proc., Radar Sonar Navig., 2004, 151, (2), pp. 114126.
    5. 5)
      • 5. Coiras, E., Petillot, Y., Lane, D.M.: ‘Multiresolution 3-D reconstruction from side-Scan sonar images’, IEEE Trans. Image Process., 2007, 16, pp. 382390.
    6. 6)
      • 6. Bikonis, K., Moszynski, M., Lubniewski, Z.: ‘Application of shape from shading technique for side scan sonar images’, Pol. Marit. Res., 2013, 20, (3), pp. 3944.
    7. 7)
      • 7. Paull, L., Saeedi, S., Seto, M., et al: ‘AUV navigation and localization: a review’, IEEE J. Ocean. Eng., 2014, 39, pp. 131149.
    8. 8)
      • 8. Ruiz, I.T., de Raucourt, S., Petillot, Y., et al: ‘Concurrent mapping and localization using sidescan sonar’, IEEE J. Ocean. Eng., 2004, 29, (2), pp. 442456.
    9. 9)
      • 9. Fallon, M.F., Kaess, M., Johannsson, H., et al: ‘Efficient AUV navigation fusing acoustic ranging and side-scan sonar’. 2011 IEEE Int. Conf. Robotics and Automation (ICRA), May 2011, pp. 23982405.
    10. 10)
      • 10. Aulinas, J., Fazlollahi, A., Salvi, J., et al: ‘Robust automatic landmark detection for underwater SLAM using side-scan sonar imaging’. 11th Int. Conf. Mobile Robots and Competitions, 2011, pp. 2126.
    11. 11)
      • 11. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (SURF)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    12. 12)
      • 12. Vandrish, P., Vardy, A., Walker, D., et al: ‘Side scan sonar image registration for AUV navigation’. Int. Submarine Engineering, 2011, pp. 1017.
    13. 13)
      • 13. Stalder, S., Bleuler, H., Ura, T.: ‘Terrain-based navigation for underwater vehicles using side scan sonar images’. OCEANS 2008, 2008, pp. 13.
    14. 14)
      • 14. Lai, Y.: ‘Rotation moment invariant feature extraction techniques for image matching’, Appl. Mech. Mater., 2014, 721, pp. 775778.
    15. 15)
      • 15. Gaidhane, V.H., Hote, Y.V., Singh, V.: ‘A computationally efficient approach for template matching-based image registration’, Sadhana, 2014, 39, (2), pp. 317331.
    16. 16)
      • 16. Zhang, H., Zhao, J., Yang, K., et al: ‘Seabed topographic contour match based on angle code technique’. OCEANS 2010, Sydney, May 2010, pp. 14.
    17. 17)
      • 17. Zhao, J., Wang, A., Zhang, H., et al: ‘Mosaic method of side-scan sonar strip images using corresponding features’, IET Image Process., 2013, 7, (6), pp. 616623.
    18. 18)
      • 18. Hao, Y., Han, Q.: ‘Data fusion of multi-beam sonar and side-scan sonar base on feature contour registration’. 2011 Int. Conf. Consumer Electronics, Communications and Networks, April 2011, pp. 174177.
    19. 19)
      • 19. Reed, S., Ruiz, I.T., Capus, C., et al: ‘The fusion of large scale classified side-scan sonar image mosaics’, IEEE Trans. Image Process., 2006, 15, (7), pp. 20492060.
    20. 20)
      • 20. Tao, W., Liu, Y.: ‘Edge preserving filter of side scan sonar images with wavelet modulus maxima shift-correlative technique’, Int. J. Imaging Syst. Technol., 2011, 21, pp. 349355.
    21. 21)
      • 21. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    22. 22)
      • 22. Yang, M., Shen, C.: ‘A random sampling algorithm for fundamental matrix robust estimation’, J. Appl. Sci., 2004, 2, pp.12.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0172
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address