http://iet.metastore.ingenta.com
1887

Pansharpening approach using Hilbert vibration decomposition

Pansharpening approach using Hilbert vibration decomposition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new approach for pansharpening of multispectral and panchromatic (PAN) images is proposed. The proposed technique is based on recently developed signal decomposition technique known as Hilbert vibration decomposition (HVD). In the proposed method, the histogram equalised PAN image is decomposed into many instantaneous amplitude (IA) and frequency components in the decreasing order of energy using the HVD. The IA of the first component (having highest energy) in the decomposition of the PAN image is used to generate the pansharpened image using appropriate pansharpening model. The tuning factor associated with the pansharpening model is optimised by single-objective particle swarm optimization algorithm. This method is also extended for the hyperspectral images. Experimental results of the proposed technique are compared with existing pansharpening methods in terms of both visual perception and objective metrics. It is observed that the proposed pansharpening scheme has improved spectral and spatial qualities as compared with the existing schemes. The effects of aliasing and misregistration errors in the proposed method are also investigated and it is observed that the proposed method is robust against aliasing and misregistration errors as compared with other existing methods.

References

    1. 1)
      • 1. Loncan, L., de Almeida, L.B., Bioucas-Dias, J.M., et al: ‘Hyperspectral pansharpening: a review’, IEEE Geosci. Remote Sens. Mag., 2015, 3, (3), pp. 2746.
    2. 2)
      • 2. Wald, L.: ‘Data fusion: definitions and architectures: fusion of images of different spatial resolutions’ (Presses des MINES, 2002).
    3. 3)
      • 3. Souza, C., Firestone, L., Silva, L.M., et al: ‘Mapping forest degradation in the eastern amazon from spot 4 through spectral mixture models’, Remote Sens. Environ., 2003, 87, (4), pp. 494506.
    4. 4)
      • 4. Lingg, A.J., Zelnio, E., Garber, F., et al: ‘A sequential framework for image change detection’, IEEE Trans. Image Process., 2014, 23, (5), pp. 24052413.
    5. 5)
      • 5. Bovolo, F., Bruzzone, L.: ‘The time variable in data fusion: a change detection perspective’, IEEE Geosci. Remote Sens. Mag., 2015, 3, (3), pp. 826.
    6. 6)
      • 6. Mohammadzadeh, A., Tavakoli, A., Zoej, V., et al: ‘Road extraction based on fuzzy logic and mathematical morphology from pan-sharpened IKONOS images’, Photogramm. Rec., 2006, 21, (113), pp. 4460.
    7. 7)
      • 7. Liu, M., Li, X., Dezert, J., et al: ‘Generic object recognition based on the fusion of 2D and 3D sift descriptors’. 2015 18th Int. Conf. IEEE Information Fusion (Fusion), 2015, pp. 10851092.
    8. 8)
      • 8. Bhowmik, M.K., De, B.K., Bhattacharjee, D., et al: ‘Multisensor fusion of visual and thermal images for human face identification using different SVM kernels’. 2012 IEEE Systems, Applications and Technology Conf. (LISAT), Long Island, 2012, pp. 17.
    9. 9)
      • 9. Laporterie-Déjean, F., de Boissezon, H., Flouzat, G., et al: ‘Thematic and statistical evaluations of five panchromatic/multispectral fusion methods on simulated Pleiades-hr images’, Inf. Fusion, 2005, 6, (3), pp. 193212.
    10. 10)
      • 10. Wald, L., Ranchin, T., Mangolini, M.: ‘Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images’, Photogramm. Eng. Remote Sens., 1997, 63, (6), pp. 691699.
    11. 11)
      • 11. Rahmani, S., Strait, M., Merkurjev, D., et al: ‘An adaptive pansharpening method’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (4), pp. 746750.
    12. 12)
      • 12. Otazu, X., González-Audícana, M., Fors, O., et al: ‘Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods’, IEEE Trans. Geosci. Remote Sens., 2005, 43, (10), pp. 23762385.
    13. 13)
      • 13. Vivone, G., Alparone, L., Chanussot, J., et al: ‘A critical comparison among pansharpening algorithms’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (5), pp. 25652586.
    14. 14)
      • 14. Gillespie, A.R., Kahle, A.B., Walker, R.E.: ‘Color enhancement of highly correlated images. ii. Channel ratio and chromaticity transformation techniques’, Remote Sens. Environ., 1987, 22, (3), pp. 343365.
    15. 15)
      • 15. Laben, C.A., Brower, B.V.: ‘Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening’. US Patent 6,011,875, 4 January 2000.
    16. 16)
      • 16. Aiazzi, B., Baronti, S., Selva, M.: ‘Improving component substitution pansharpening through multivariate regression of MS + PAN data’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (10), pp. 32303239.
    17. 17)
      • 17. Thomas, C., Ranchin, T., Wald, L., et al: ‘Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (5), pp. 13011312.
    18. 18)
      • 18. Liu, J.: ‘Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details’, Int. J. Remote Sens., 2000, 21, (18), pp. 34613472.
    19. 19)
      • 19. Aiazzi, B., Alparone, L., Baronti, S., et al: ‘Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis’, IEEE Trans. Geosci. Remote Sens., 2002, 40, (10), pp. 23002312.
    20. 20)
      • 20. Aiazzi, B., Alparone, L., Baronti, S., et al: ‘An MTF-based spectral distortion minimizing model for pan-sharpening of very high resolution multispectral images of urban areas’. Second GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 2003, 2003, pp. 9094.
    21. 21)
      • 21. Shah, V.P., Younan, N.H., King, R.L.: ‘An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (5), pp. 13231335.
    22. 22)
      • 22. Nunez, J., Otazu, X., Fors, O., et al: ‘Multiresolution-based image fusion with additive wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (3), pp. 12041211.
    23. 23)
      • 23. González-Audícana, M., Saleta, J.L., Catalán, R.G., et al: ‘Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (6), pp. 12911299.
    24. 24)
      • 24. Ling, Y., Ehlers, M., Usery, E.L., et al: ‘FFT enhanced IHS transform method for fusing high-resolution satellite images’, ISPRS J. Photogramm. Remote Sens., 2007, 61, (6), pp. 381392.
    25. 25)
      • 25. Bracewell, R.N., Bracewell, R.N.: ‘The Fourier transform and its applications’ (McGraw-Hill, New York, 1986), vol. 31999.
    26. 26)
      • 26. Dong, W., Li, X., Lin, X., et al: ‘A bidimensional empirical mode decomposition method for fusion of multispectral and panchromatic remote sensing images’, Remote Sens., 2014, 6, (9), pp. 84468467.
    27. 27)
      • 27. Feldman, M.: ‘Time-varying vibration decomposition and analysis based on the Hilbert transform’, J. Sound Vib., 2006, 295, (3), pp. 518530.
    28. 28)
      • 28. Saxena, N., Sharma, K.K.: ‘Hilbert vibration decomposition based image fusion’, Electron. Lett., 2016, 52, (19), pp. 16051607.
    29. 29)
      • 29. Lee, J., Lee, C.: ‘Fast and efficient panchromatic sharpening’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (1), pp. 155163.
    30. 30)
      • 30. Ranchin, T., Wald, L.: ‘Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation’, Photogramm. Eng. Remote Sens., 2000, 66, (1), pp. 4961.
    31. 31)
      • 31. Wald, L.: ‘Quality of high resolution synthesised images: Is there a simple criterion?’. Third conference’ fusion of earth data: merging point measurements, raster maps and remotely sensed images’. SEE/URISCA, 2000, pp. 99103.
    32. 32)
      • 32. Shahdoosti, H.R., Ghassemian, H.: ‘Fusion of MS and PAN images preserving spectral quality’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (3), pp. 611615.
    33. 33)
      • 33. Khan, M.M., Chanussot, J., Condat, L., et al: ‘Indusion: fusion of multispectral and panchromatic images using the induction scaling technique’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (1), pp. 98102.
    34. 34)
      • 34. Vivone, G., Restaino, R., Licciardi, G., et al: ‘Multiresolution analysis and component substitution techniques for hyperspectral pansharpening’. 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2014, pp. 26492652.
    35. 35)
      • 35. Chavez, P., Sides, S.C., Anderson, J.A., et al: ‘Comparison of three different methods to merge multiresolution and multispectral data-landsat tm and spot panchromatic’, Photogramm. Eng. Remote Sens., 1991, 57, (3), pp. 295303.
    36. 36)
      • 36. Liao, W., Huang, X., Van Coillie, F., et al: ‘Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (6), pp. 29842996.
    37. 37)
      • 37. Baronti, S., Aiazzi, B., Selva, M., et al: ‘A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery’, IEEE J. Sel. Top. Signal Process., 2011, 5, (3), pp. 446453.
    38. 38)
      • 38. Durak, L., Arikan, O.: ‘Short-time Fourier transform: two fundamental properties and an optimal implementation’, IEEE Trans. Signal Process., 2003, 51, (5), pp. 12311242.
    39. 39)
      • 39. Gao, R.X., Yan, R.: ‘From Fourier transform to wavelet transform: a historical perspective’, in Gao, R.X., Yan, R. (Eds.): ‘Wavelets’ (Springer, 2011), pp. 1732.
    40. 40)
      • 40. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1998, 454, (1971), pp. 903995.
    41. 41)
      • 41. Huang, Y., Yan, C., Xu, Q.: ‘On the difference between empirical mode decomposition and Hilbert vibration decomposition for earthquake motion records’..
    42. 42)
      • 42. Available at http://hitech.technion.ac.il/feldman/hvd.html.
    43. 43)
      • 43. Ramos, J., Reyes, J., Barocio, E.: ‘An improved Hilbert vibration decomposition method for analysis of low frequency oscillations’. 2014 IEEE PES Transmission & Distribution Conf. and Exposition-Latin America (PES T&D-LA), 2014, pp. 16.
    44. 44)
      • 44. Vivone, G., Restaino, R., Dalla Mura, M., et al: ‘Contrast and error-based fusion schemes for multispectral image pansharpening’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (5), pp. 930934.
    45. 45)
      • 45. Aiazzi, B., Baronti, S., Selva, M., et al: ‘Bi-cubic interpolation for shift-free pansharpening’, ISPRS J. Photogramm. Remote Sens., 2013, 86, pp. 6576.
    46. 46)
      • 46. Yuhas, R.H., Goetz, A.F., Boardman, J.W.: ‘Discrimination among semi-arid landscape end members using the spectral angle mapper (SAM) algorithm’. 1992.
    47. 47)
      • 47. Aiazzi, B., Alparone, L., Baronti, S., et al: ‘MTF-tailored multiscale fusion of high-resolution MS and PAN imagery’, Photogramm. Eng. Remote Sens., 2006, 72, (5), pp. 591596.
    48. 48)
      • 48. Wang, Z., Bovik, A.C.: ‘A universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    49. 49)
      • 49. Rajabi, R., Ghassemian, H.: ‘Fusion of hyperspectral and panchromatic images using spectral uumixing results’. 2013, arXiv preprint arXiv:1310.5965.
    50. 50)
      • 50. Yokoya, N., Yairi, T., Iwasaki, A.: ‘Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (2), pp. 528537.
    51. 51)
      • 51. Alparone, L., Aiazzi, B., Baronti, S., et al: ‘Multispectral and panchromatic data fusion assessment without reference’, Photogramm. Eng. Remote Sens., 2008, 74, (2), pp. 193200.
    52. 52)
      • 52. Available at: http://openremotesensing.net/index.php/codes/11-pansharpening/2-pansharpening.
    53. 53)
      • 53. Green, R.O., Eastwood, M.L., Sarture, C.M., et al: ‘Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)’, Remote Sens. Environ., 1998, 65, (3), pp. 227248.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2017.0133
Loading

Related content

content/journals/10.1049/iet-ipr.2017.0133
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address