http://iet.metastore.ingenta.com
1887

Part-based recognition of vehicle make and model

Part-based recognition of vehicle make and model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fine-grained recognition is a challenge that the computer vision community faces nowadays. The main category of the object is known in this problem and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a hard fine-grained classification problem, due to the large number of classes, substantial inner-class and small inter-class distance. In this study, a novel approach has been proposed for VMMR based on latent SVM formulation. This approach automatically finds a set of discriminative parts in each class of vehicles by employing a novel greedy parts localisation algorithm, while learning a model per class using both features extracted from these parts and the spatial relationship between them. An effective and practical multi-class data mining method is proposed to filter out hard negative samples in the training procedure. Employing these trained individual models together, the authors’ system can classify vehicles make and model with a high accuracy. For evaluation purposes, a new dataset including more than 5000 vehicles of 28 different makes and models has been collected and fully annotated. The experimental results on this dataset and the CompCars dataset indicate the outstanding performance of the authors’ approach.

References

    1. 1)
      • Z. Sun , B. George , M. Ronald .
        1. Sun, Z., George, B., Ronald, M.: ‘On-road vehicle detection: a review’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 694711.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 694 - 711
    2. 2)
      • M. Al-Smadi , K. Abdulrahim , R.A. Salam .
        2. Al-Smadi, M., Abdulrahim, K., Salam, R.A.: ‘Traffic surveillance: a review of vision based vehicle detection, recognition and tracking’, Int. J. Appl. Eng. Res., 2016, 11, (1), pp. 713726.
        . Int. J. Appl. Eng. Res. , 1 , 713 - 726
    3. 3)
      • Z. Sun , B. George , M. Ronald .
        3. Sun, Z., George, B., Ronald, M.: ‘On-road vehicle detection using optical sensors: a review’. 7th IEEE Int. Conf. on Intelligent Transportation Systems, 2004, pp. 585590.
        . 7th IEEE Int. Conf. on Intelligent Transportation Systems , 585 - 590
    4. 4)
      • A. Ambardekar , M. Nicolescu , G. Bebis .
        4. Ambardekar, A., Nicolescu, M., Bebis, G., et al: ‘Vehicle classification framework: a comparative study’, EURASIP J. Image Video Process., 2014, 2014, (1), pp. 113.
        . EURASIP J. Image Video Process. , 1 , 1 - 13
    5. 5)
      • Y. Zhou , L. Liu , L. Shao .
        5. Zhou, Y., Liu, L., Shao, L., et al: ‘DAVE: a unified framework for fast vehicle detection and annotation’, 2016, arXiv:1607.04564v2, pp. 116.
        . , 1 - 16
    6. 6)
      • K. Yousaf , A. Iftikhar , A. Javed .
        6. Yousaf, K., Iftikhar, A., Javed, A.: ‘Comparative analysis of automatic vehicle classification techniques: a survey’, Int. J. Image, Graph. Signal Process., 2012, 4, (9), p. 52.
        . Int. J. Image, Graph. Signal Process. , 9 , 52
    7. 7)
      • P.F. Felzenszwalb , R.B. Girshick , D. McAllester .
        7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models.’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1627 - 1645
    8. 8)
      • S. Andrews , I. Tsochantaridis , T. Hofmann .
        8. Andrews, S., Tsochantaridis, I., Hofmann, T.: ‘Support vector machines for multiple-instance learning’. Advances in Neural Information Processing Systems, 2002, pp. 561568.
        . Advances in Neural Information Processing Systems , 561 - 568
    9. 9)
      • J. Platt .
        9. Platt, J.: ‘Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods’, Adv. Large Margin Classif., 1999, 10, (3), pp. 6174.
        . Adv. Large Margin Classif. , 3 , 61 - 74
    10. 10)
      • L. Yang , P. Luo , C.C. Loy .
        10. Yang, L., Luo, P., Loy, C.C., et al: ‘A large-scale car dataset for fine-grained categorization and verification’. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 39733981.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 3973 - 3981
    11. 11)
      • M. Conos .
        11. Conos, M.: ‘Recognition of vehicle make from a frontal view’. Master Thesis, Czech Tech, 2007.
        .
    12. 12)
      • X. Clady , P. Negri , M. Milgram .
        12. Clady, X., Negri, P., Milgram, M., et al: ‘Multi-class vehicle type recognition system’, Artificial Neural Networks in Pattern Recognition,(Lecture Notes in Computer Science), 2008, pp. 228239.
        . Artificial Neural Networks in Pattern Recognition, , 228 - 239
    13. 13)
      • G. Pearce , N. Pears .
        13. Pearce, G., Pears, N.: ‘Automatic make and model recognition from frontal images of cars’. 8th IEEE Int. Conf. on Advanced Video and Signal based Surveillance, 2011, pp. 373378.
        . 8th IEEE Int. Conf. on Advanced Video and Signal based Surveillance , 373 - 378
    14. 14)
      • S. Saravi , E.a. Edirisinghe .
        14. Saravi, S., Edirisinghe, E.a.: ‘Vehicle make and model recognition in CCTV footage’. 18th Int. Conf. on Digital Signal Processing, 2013, pp. 16.
        . 18th Int. Conf. on Digital Signal Processing , 1 - 6
    15. 15)
      • V. Petrovic , T. Cootes .
        15. Petrovic, V., Cootes, T.: ‘Analysis of features for rigid structure vehicle type recognition’. British Machine Vision Conf., 2004, pp. 587596.
        . British Machine Vision Conf. , 587 - 596
    16. 16)
      • D.T. Munroe , M.G. Madden .
        16. Munroe, D.T., Madden, M.G.: ‘Multi-class and single-class classification approaches to vehicle model recognition from images’. 16th Irish Conf. on Artificial Intelligence and Cognitive Science, 2005, pp. 93102.
        . 16th Irish Conf. on Artificial Intelligence and Cognitive Science , 93 - 102
    17. 17)
      • N. Boonsim , S. Prakoonwit .
        17. Boonsim, N., Prakoonwit, S.: ‘Car make and model recognition under limited lighting conditions at night’, Pattern Anal. Appl., 2016, pp. 113, (doi:10.1007/s10044-016-0559-6).
        . Pattern Anal. Appl. , 1 - 13
    18. 18)
      • J. Hsieh , L. Chen .
        18. Hsieh, J., Chen, L.: ‘Vehicle make and model recognition using symmetrical SURF’. Advanced Video and Signal Based Surveillance, 2013, pp. 472477.
        . Advanced Video and Signal Based Surveillance , 472 - 477
    19. 19)
      • A. Psyllos , C.N. Anagnostopoulos , E. Kayafas .
        19. Psyllos, A., Anagnostopoulos, C.N., Kayafas, E.: ‘Vehicle model recognition from frontal view image measurements’, Comput. Stand. Interfaces, 2011, 33, (2), pp. 142151.
        . Comput. Stand. Interfaces , 2 , 142 - 151
    20. 20)
      • H. Yang , L. Zhai , Z. Liu .
        20. Yang, H., Zhai, L., Liu, Z., et al: ‘An efficient method for vehicle model identification via logo recognition’. Int. Conf. on Computational and Information Sciences, 2013, pp. 10801083.
        . Int. Conf. on Computational and Information Sciences , 1080 - 1083
    21. 21)
      • D. Santos , P.L. Correia .
        21. Santos, D., Correia, P.L.: ‘Car recognition based on back lights and rear view features’. 10th Int. Workshop on Image Analysis for Multimedia Interactive Services, 2009, pp. 137140.
        . 10th Int. Workshop on Image Analysis for Multimedia Interactive Services , 137 - 140
    22. 22)
      • D. Llorca , D. Colas , I. Daza .
        22. Llorca, D., Colas, D., Daza, I.: ‘Vehicle model recognition using geometry and appearance of car emblems from rear view images’. 17th IEEE Int. Conf. on Intelligent Transportation Systems, 2014, pp. 30943099.
        . 17th IEEE Int. Conf. on Intelligent Transportation Systems , 3094 - 3099
    23. 23)
      • M.S. Sarfraz , M.H. Khan .
        23. Sarfraz, M.S., Khan, M.H.: ‘A probabilistic framework for patch based vehicle type recognition’. VISAPP, 2011, pp. 358363.
        . VISAPP , 358 - 363
    24. 24)
      • A. Herout , G. Fit .
        24. Herout, A., Fit, G.: ‘BoxCars: 3D boxes as CNN input for improved fine-grained vehicle recognition’. IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 30063015.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 3006 - 3015
    25. 25)
      • A.S. Razavian , H. Azizpour , J. Sullivan .
        25. Razavian, A.S., Azizpour, H., Sullivan, J., et al: ‘CNN features off-the-shelf: an astounding baseline for recognition’. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2014, pp. 512519.
        . IEEE Conf. on Computer Vision and Pattern Recognition Workshops , 512 - 519
    26. 26)
      • Y. Gao , H.J. Lee .
        26. Gao, Y., Lee, H.J.: ‘Vehicle make recognition based on convolutional neural network’. 2nd Int. Conf. on Information Science and Security, 2015, pp. 14.
        . 2nd Int. Conf. on Information Science and Security , 1 - 4
    27. 27)
      • S. Ren , K. He , R. Girshick .
        27. Ren, S., He, K., Girshick, R., et al: ‘Faster R-CNN: Towards real-time object detection with region proposal networks’. Advances in Neural Information Processing Systems, 2015, pp. 9199.
        . Advances in Neural Information Processing Systems , 91 - 99
    28. 28)
      • R. Girshick , F. Iandola , T. Darrell .
        28. Girshick, R., Iandola, F., Darrell, T., et al: ‘Deformable part models are convolutional neural networks’. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 437446.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 437 - 446
    29. 29)
      • H. Huttunen , F.S. Yancheshmeh , K. Chen .
        29. Huttunen, H., Yancheshmeh, F.S., Chen, K.: ‘Car Type Recognition with Deep Neural Networks’, 2016, arXiv Prepr. arXiv1602.07125.
        .
    30. 30)
      • Y. Gao , H. Lee .
        30. Gao, Y., Lee, H.: ‘Local tiled deep networks for recognition of vehicle make and model’, Sensors, 2016, 16, (2), p. 226.
        . Sensors , 2 , 226
    31. 31)
      • Y. Zhang , X.S. Wei , J. Wu .
        31. Zhang, Y., Wei, X.S., Wu, J., et al: ‘Weakly supervised fine-grained categorization with part-based image representation’, IEEE Trans. Image Process., 2016, 25, (4), pp. 17131725.
        . IEEE Trans. Image Process. , 4 , 1713 - 1725
    32. 32)
      • J. Deng , J. Krause , L. Fei-fei .
        32. Deng, J., Krause, J., Fei-fei, L.: ‘Fine-grained crowdsourcing for fine-grained recognition’. IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 580587.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 580 - 587
    33. 33)
      • N. Zhang , R. Farrell , F. Iandola .
        33. Zhang, N., Farrell, R., Iandola, F., et al: ‘Deformable part descriptors for fine-grained recognition and attribute prediction’. EEE Int. Conf. on Computer Vision, 2013, pp. 729736.
        . EEE Int. Conf. on Computer Vision , 729 - 736
    34. 34)
      • J. Fang , Y. Zhou , Y. Yu .
        34. Fang, J., Zhou, Y., Yu, Y., et al: ‘Fine-grained vehicle model recognition using a coarse-to-fine convolutional neural network architecture’, IEEE Trans. Intell. Transp. Syst., 2016, pp. 111.
        . IEEE Trans. Intell. Transp. Syst. , 1 - 11
    35. 35)
      • N. Dalal , B. Triggs .
        35. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, pp. 886893.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , 886 - 893
    36. 36)
      • 36. The PASCAL Visual Object Classes’. Available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/, accessed March 2015.
        .
    37. 37)
      • 37. NTOU-MMR Dataset’. Available at http://mmplab.cs.ntou.edu.tw/mmplab/MMR/MMR.html, accessed October 2016.
        .
    38. 38)
      • C. Chang , C. Lin .
        38. Chang, C., Lin, C.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), pp. 127.
        . ACM Trans. Intell. Syst. Technol. , 3 , 1 - 27
    39. 39)
      • J.-W. Hsieh , L.-C. Chen , D.-Y. Chen .
        39. Hsieh, J.-W., Chen, L.-C., Chen, D.-Y.: ‘Symmetrical SURF and its applications to vehicle detection and vehicle make and model recognition’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 620.
        . IEEE Trans. Intell. Transp. Syst. , 1 , 6 - 20
    40. 40)
      • B. Zhang .
        40. Zhang, B.: ‘Reliable classification of vehicle types based on cascade classifier ensembles’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 322332.
        . IEEE Trans. Intell. Transp. Syst. , 1 , 322 - 332
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0969
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0969
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address