Multi-dimensional data representation using linear tensor coding

Multi-dimensional data representation using linear tensor coding

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Linear coding is widely used to concisely represent data sets by discovering basis functions of capturing high-level features. However, the efficient identification of linear codes for representing multi-dimensional data remains very challenging. In this study, the authors address the problem by proposing a linear tensor coding algorithm to represent multi-dimensional data succinctly via a linear combination of tensor-formed bases without data expansion. Motivated by the amalgamation of linear image coding and multi-linear algebra, each basis function in the authors’ algorithm captures some specific variabilities. The basis-associated coefficients can be used for data representation, compression and classification. When the authors apply the algorithm on both simulated phantom data and real facial data, the experimental results demonstrate their algorithm not only preserves the original information of input data, but also produces localised bases with concrete physical meanings.


    1. 1)
      • 1. Parke, F.I.: ‘A parametric model of human face’. PhD Thesis, University of Utah, Salt Lake City, 1974.
    2. 2)
      • 2. Chellappa, R., Wilson, C.L., Sirohe, S.: ‘Human and machine recognition of faces: a survey’, Proc. IEEE, 1995, 83, (5), pp. 705740.
    3. 3)
      • 3. Jolliffe, I.T.: ‘Principal component analysis’ (Springer-Verlag, New York, 2002).
    4. 4)
      • 4. Shashua, A., Levin, A.: ‘Linear image coding for regression and classification using the tensor-rank principle’. IEEE Conf. Computer Vision and Pattern Recognition, USA, Kauai, December 2001, pp. 4249.
    5. 5)
      • 5. Yang, J., Zhang, D., Frangi, A.F., et al: ‘Two-dimensional PCA: a new approach to appearance-based face representation and recognition’, IEEE Trans. PAMI, 2004, 26, (1), pp. 131137.
    6. 6)
      • 6. Tucker, L.R.: ‘The extension of factor analysis to three-dimensional matrices’, Contributions to Mathematical Psychology, 1964, pp. 110127.
    7. 7)
      • 7. Tucker, L.R.: ‘Some mathematical notes on three-mode factor analysis’, Psychometrika, 1966, 31, (3) pp. 279311.
    8. 8)
      • 8. Bader, B.W., Kolda, T.G.: ‘Algorithm 862: Matlab tensor classes for fast algorithm prototyping’, ACM Trans. Math. Softw., 2006, 32, (4), pp. 635653.
    9. 9)
      • 9. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: ‘A multilinear singular value decomposition’, SIAM J. Matrix Anal. Appl., 2001, 21, (4), pp. 12531278.
    10. 10)
      • 10. Jia, K., Gong, S.G.: ‘Multi-modal tensor face for simultaneous super-resolution and recognition’. Int. Conf. on Computer Vision, China, Beijing, October 2005, pp. 16831690.
    11. 11)
      • 11. Lu, H.P., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘Uncorrelated multilinear discriminant analysis with regularization for gait recognition’. Biometrics Symp., 2007, pp. 16.
    12. 12)
      • 12. Vasilescu, M.A.O., Terzopoulos, D.: ‘Multilinear analysis of image ensembles: tensorface’. Euro. Conf. on Computer Vision, Denmark, Copenhagen, May 2002, pp. 447460.
    13. 13)
      • 13. Vasilescu, M.A.O., Terzopoulos, D.: ‘Multilinear analysis for facial image recognition’. Int. Conf. on Pattern Recognition, Canada, Quebec, August 2002, pp. 511514.
    14. 14)
      • 14. Wang, H.C., Ahuja, N.: ‘Facial expression decomposition’. Int. Conf. on Computer Vision, France, Nice, October 2003, pp. 958965.
    15. 15)
      • 15. Qiao, X., Han, X.H., Igarashi, T., et al: ‘Tensor-based subspace learning and its applications in multi-pose face synthesis’, Neurocomputing, 2010, 73, (13), pp. 27272736.
    16. 16)
      • 16. Fu, Y., Huang, T.S.: ‘Image classification using correlation tensor analysis’, IEEE Trans. Image Process., 2008, 17, (2), pp. 226234.
    17. 17)
      • 17. Yan, S.C., Xu, D., Yang, Q.: ‘Discriminant analysis with tensor representation’. IEEE Conf. on Computer Vision and Pattern Recognition, USA, San Diego, June 2005, pp. 526532.
    18. 18)
      • 18. Hazan, T., Polak, S., Shashua, A.: ‘Sparse image coding using a 3D non-negative tensor factorization’. IEEE Int. Conf. on Computer Vision, China, Beijing, October 2005, pp. 5057.
    19. 19)
      • 19. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘MPCA: multilinear principal component analysis of tensor objects’, IEEE Trans. Neural Netw., 2008, 19, (1), pp. 1839.
    20. 20)
      • 20. Xu, R., Chen, Y.W.: ‘Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples’, Neurocomputing, 2009, 72, (10), pp. 22762287.
    21. 21)
      • 21. Qiao, X., Xu, R., Chen, Y.W., et al: ‘Generalized N-Dimensional Principal Component Analysis (GND-PCA) based statistical appearance modeling of facial images with multiple modes’, IPSJ Trans. Comput. Vis. Appl., 2009, 1, (231), pp. 231241.
    22. 22)
      • 22. Lu, H.P., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘Multilinear subspace learning: dimensionality reduction of multidimensional data’ (CRC Press, Boca Raton, 2013).
    23. 23)
      • 23. Chen, Y.W., Fukui, T., Qiao, X., et al: ‘Multi-angle view, illumination and cosmetic facial image database (MaVIC) and its statistical analysis2008, (LNCS, 5342), (Springer-Verlag Berlin, Heidelberg, 2013) pp. 411420.
    24. 24)
      • 24. Yu, H.C., Bennamoun, M.: ‘1D-PCA, 2D-PCA to nD-PCA’. Int. Conf. on Pattern Recognition, China, Hong Kong, August 2006, pp. 181184.
    25. 25)
      • 25. Qiao, X., Chen, Y.W.: ‘A statistical texture model of the liver based on generalized N-dimensional principal component analysis (GND-PCA) and 3D shape normalization’, Int. J. Biomed. Imaging, 2011, 6, Article ID 601672.

Related content

This is a required field
Please enter a valid email address