WN-based approach to melanoma diagnosis from dermoscopy images

WN-based approach to melanoma diagnosis from dermoscopy images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new computer-aided diagnosis (CAD) system for detecting malignant melanoma from dermoscopy images based on a fixed grid wavelet network (FGWN) is proposed. This novel approach is unique in at least three ways: (i) the FGWN is a fixed WN which does not require gradient-type algorithms for its construction, (ii) the construction of FGWN is based on a new regressor selection technique: D-optimality orthogonal matching pursuit (DOOMP), and (iii) the entire CAD system relies on the proposed FGWN. These characteristics enhance the integrity and reliability of the results obtained from different stages of automatic melanoma diagnosis. The DOOMP algorithm optimises the network model approximation ability rapidly while improving the model adequacy and robustness. This FGWN is then used to build a CAD system, which performs image enhancement, segmentation, and classification. To classify the images, in the first stage, 441 features with respect to colour, texture, and shape of each lesion are extracted. By means of feature selection, these 441 features are then reduced to 10. The proposed CAD system achieved an accuracy of 91.82%, sensitivity of 92.61%, specificity of 91%, and area under the curve value of 0.944 on a challenging set of 1039 dermoscopy images.


    1. 1)
      • 1. Kasmi, R., Mokrani, K.: ‘Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule’, IET Image Process., 2016, 10, (6), pp. 448455.
    2. 2)
      • 2. Xiang, L., Aldridge, B., Fisher, R., et al: ‘Estimating the ground truth from multiple individual segmentations incorporating prior pattern analysis with application to skin lesion segmentation’. Proc. Eighth Int. Symp. on Biomedical Imaging (ISBI.11), Electronic Proc., April 2011, pp. 14381441.
    3. 3)
      • 3. Gonzalez-Castro, V., Debayle, J., Wazaefi, Y., et al: ‘Automatic classification of skin lesions using color mathematical morphology-based texture descriptors’. Proc. Int. Conf. Quality Control by Artificial Vision, Le Creusot, France, June 2015.
    4. 4)
      • 4. Sadri, A.R., Zekri, M., Sadri, S., et al: ‘Segmentation of dermoscopy images using wavelet networks’, IEEE Trans. Biomed. Eng., 2013, 60, (4), pp. 11341141.
    5. 5)
      • 5. Wighton, P., Lee, T.K., Lui, H., et al: ‘Generalizing common tasks in automated skin lesion diagnosis’, IEEE Trans. Inf. Technol. Biomed., 2011, 15, (4), pp. 622629.
    6. 6)
      • 6. Garnavi, R., Aldeen, M., Bailey, J.: ‘Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (6), pp. 12391252.
    7. 7)
      • 7. Ganster, H., Pinz, A., Rohrer, R., et al: ‘Automated melanoma recognition’, IEEE Trans. Med. Imaging, 2001, 20, (3), pp. 233239.
    8. 8)
      • 8. Iyatomi, H., Oka, H., Saito, M., et al: ‘Quantitative assessment of tumour extraction from dermoscopy images and evaluation of computer-based extraction methods for an automatic melanoma diagnostic system’, Melanoma Res., 2006, 16, (2), pp. 183190.
    9. 9)
      • 9. Ballerini, L., Xiang, L., Fisher, R.B., et al: ‘A query-by-example content-based image retrieval system of non-melanoma skin lesions’. Proc. MICCAI-09 Workshop MCBR-CDS 2009: Medical Content based Retrieval for Clinical Decision Support, 2010 (LNCS, 5853), pp. 3138.
    10. 10)
      • 10. González-Castro, V., Debayle, J., Wazaefi, Y., et al: ‘Texture descriptors based on adaptive neighborhoods for classification of pigmented skin lesions’, J. Electron. Imaging, 2015, 24, (6), p. 061104.
    11. 11)
      • 11. Billings, S.A., Hua-Liang, W.: ‘A new class of wavelet networks for nonlinear system identification’, IEEE Trans. Neural Netw., 2005, 16, (4), pp. 862874.
    12. 12)
      • 12. Hosseinabadi, H.Z., Nazari, B., Amirfattahi, R., et al: ‘Wavelet network approach for structural damage identification using guided ultrasonic waves’, IEEE Trans. Instrum. Meas., 2014, 63, (7), pp. 16801692.
    13. 13)
      • 13. Xu, J., Ho, D.W.C.: ‘A basis selection algorithm for wavelet neural networks’, Neurocomputing, 2002, 48, (1), pp. 681689.
    14. 14)
      • 14. Hong, X., Harris, C.J.: ‘Nonlinear model structure design and construction using orthogonal least squares and D-optimality design’, IEEE Trans. Neural Netw., 2002, 13, (5), pp. 12451250.
    15. 15)
      • 15. Kira, K., Rendell, L.A.: ‘A practical approach to feature selection’. Proc. Ninth Int. Workshop Machine Learning, Aberdeen, Scotland, UK, July 1992, pp. 249256.
    16. 16)
      • 16. Zhang, Q.: ‘Using wavelet network in nonparametric estimation’, IEEE Trans. Neural Netw., 1997, 8, (2), pp. 227236.
    17. 17)
      • 17. Sadri, A.R., Zekri, M., Sadri, S., et al: ‘Impulse noise cancellation of medical images using wavelet networks and median filters’, J. Med. Signals Sens., 2012, 2, (1), pp. 2537.
    18. 18)
      • 18. Lee, T., Ng, V., Gallagher, R., et al: ‘Dullrazor®: a software approach to hair removal from images’, Comput. Biol. Med., 1997, 27, (6), pp. 533543.
    19. 19)
      • 19. Celebi, M.E., Kingravi, H.A., Uddin, B., et al: ‘A methodological approach to the classification of dermoscopy images’, Comput. Med. Imaging Graph., 2007, 31, (6), pp. 362373.
    20. 20)
      • 20. Huang, J., Kumar, S.R., Mitra, M., et al: ‘Image indexing using color correlograms’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997, pp. 762768.
    21. 21)
      • 21. Yu, L., Liu, H.: ‘Feature selection for high-dimensional data: a fast correlation-based filter solution’. Proc. 20th Int. Conf. Machine Learning, Washington, DC, USA, August 2003, pp. 856863.
    22. 22)
      • 22. Duda, R., Hart, P., Stork, D.: ‘Pattern classification’ (John Wiley & Sons, New York, 2001, 2nd edn.), 2012.
    23. 23)
      • 23. Peng, H., Long, F., Ding, C.: ‘Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (8), pp. 12261238.
    24. 24)
      • 24. Huan, L., Setiono, R.: ‘Chi2: feature selection and discretization of numeric attributes’. Proc. Seventh Int. Conf. Tools with Artificial Intelligence, Washington, DC, USA, November 1995, pp. 388391.
    25. 25)
      • 25. Arizona State University: ‘Advancing feature selection research-ASU feature selection repository’ (Arizona State University, Glendale, AZ, USA, 2010), pp. 128.
    26. 26)
      • 26. Huang, K., Aviyente, S.: ‘Wavelet feature selection for image classification’, IEEE Trans. Image Process., 2008, 17, (9), pp. 17091720.
    27. 27)
      • 27. Kohavi, R.: ‘A study of cross-validation and bootstrap for accuracy estimation and model selection’. Proc. 14th Int. Conf. Tools with Artificial Intelligence, Montreal, Quebec, Canada, August 1995, pp. 11371145.
    28. 28)
      • 28. Zhang, Q., Benveniste, A.: ‘Wavelet networks’, IEEE Trans. Neural Netw., 1992, 3, (6), pp. 889898.

Related content

This is a required field
Please enter a valid email address