Adaptive localised region and edge-based active contour model using shape constraint and sub-global information for uterine fibroid segmentation in ultrasound-guided HIFU therapy

Adaptive localised region and edge-based active contour model using shape constraint and sub-global information for uterine fibroid segmentation in ultrasound-guided HIFU therapy

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Uterine fibroids segmentation in ultrasound images is of great importance in the definition of intra-operative planning of ultrasound-guided high-intensity focused ultrasound (HIFU) therapy. However, it is challenging to obtain accurate, robust and efficient uterine fibroid segmentation due to low quality of ultrasound images. In this study, the authors propose a novel adaptive localised region and edge-based active contour model using shape constraint and sub-global information to accurately and efficiently segment the uterine fibroids in ultrasound images with robustness against initial contour. The authors first define adaptive local radius for the localised region-based model and combine it with the edge-based model to accurately and efficiently capture image's heterogeneous features and edge features. Then, they incorporate a shape constraint to reduce boundary leakage or excessive contraction to obtain more accurate segmentation. To overcome the initialisation sensitivity, they introduce the sub-global information to prevent the curve from trapping into the local minima and obtain robust results. Furthermore, the authors optimise computation by adaptively sharing local region and employing the multi-scale segmentation method to achieve efficient segmentation. The proposed method is validated by uterine fibroid ultrasound images in HIFU therapy and the results demonstrate that it can achieve accurate, robust and efficient segmentation.


    1. 1)
      • 1. Walker, C.L., Stewart, E.A.: ‘Uterine fibroids: the elephant in the room’, Science, 2005, 308, (5728), pp. 15891592.
    2. 2)
      • 2. Elizabeth, A., Stewart, M.D.: ‘Uterine fibroids’, N. Engl. J. Med., 2015, 372, (17), pp. 16461655.
    3. 3)
      • 3. Kennedy, J.E.: ‘High-intensity focused ultrasound in the treatment of solid tumours’, Nat. Rev. Cancer, 2005, 5, (4), pp. 321327.
    4. 4)
      • 4. Zhang, L., Zhu, H., Jin, C., et al: ‘High-intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins’, Eur. Radiol., 2009, 19, (2), pp. 437445.
    5. 5)
      • 5. Fontanarosa, D., van der Meer, S., Bamber, J., et al: ‘Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management’, Phys. Med. Biol., 2015, 60, (3), p. R77.
    6. 6)
      • 6. Noble, J.A., Boukerroui, D.: ‘Ultrasound image segmentation: a survey’, IEEE Trans. Med. Imaging, 2006, 25, (8), pp. 9871010.
    7. 7)
      • 7. Garnier, C., Bellanger, J.J., Wu, K., et al: ‘Prostate segmentation in HIFU therapy’, IEEE Trans. Med. Imaging, 2011, 30, (3), pp. 792803.
    8. 8)
      • 8. Xu, M., Zhang, D., Yang, Y., et al: ‘A split-and-merge-based uterine fibroid ultrasound image segmentation method in HIFU therapy’, PLoS ONE, 2015, 10, (5), p. e0125738.
    9. 9)
      • 9. Menze, B.H., Jakab, A., Bauer, S., et al: ‘The multimodal brain tumor image segmentation benchmark (BRATS)’, IEEE Trans. Med. Imaging, 2015, 34, (10), pp. 19932024.
    10. 10)
      • 10. Smistad, E., Falch, T.L., Bozorgi, M., et al: ‘Medical image segmentation on GPUs – a comprehensive review’, Med. Image Anal., 2015, 20, (1), pp. 118.
    11. 11)
      • 11. Ghose, S., Oliver, A., Martí, R., et al: ‘A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 262287.
    12. 12)
      • 12. Wang, H., Huang, T.Z., Xu, Z., et al: ‘An active contour model and its algorithms with local and global Gaussian distribution fitting energies’, Inf. Sci., 2014, 263, pp. 4359.
    13. 13)
      • 13. Cheng, H.D., Shan, J., Ju, W., et al: ‘Automated breast cancer detection and classification using ultrasound images: a survey’, Pattern Recognit., 2010, 43, (1), pp. 299317.
    14. 14)
      • 14. Li, C., Huang, R., Ding, Z., et al: ‘A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20072016.
    15. 15)
      • 15. Wang, W., Zhu, L., Qin, J., et al: ‘Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion’, Opt. Lasers Eng., 2014, 54, pp. 105116.
    16. 16)
      • 16. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331.
    17. 17)
      • 17. Kichenassamy, S., Kumar, A., Olver, P., et al: ‘Conformal curvature flows: from phase transitions to active vision’, Arch. Ration. Mech. Anal., 1996, 134, (3), pp. 275301.
    18. 18)
      • 18. Ronfard, R.: ‘Region-based strategies for active contour models’, Int. J. Comput. Vis., 1994, 13, (2), pp. 229251.
    19. 19)
      • 19. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179.
    20. 20)
      • 20. Xu, C., Prince, J.L.: ‘Snakes, shapes, and gradient vector flow’, IEEE Trans. Image Process., 1998, 7, (3), pp. 359369.
    21. 21)
      • 21. Niu, S., Chen, Q., de Sisternes, L., et al: ‘Robust noise region-based active contour model via local similarity factor for image segmentation’, Pattern Recognit., 2016, 21, pp. 104119.
    22. 22)
      • 22. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    23. 23)
      • 23. Sum, K., Cheung, P.: ‘Vessel extraction under non-uniform illumination: a level set approach’, IEEE Trans. Biomed. Eng., 2008, 55, (1), pp. 358360.
    24. 24)
      • 24. Brox, T., Cremers, D.: ‘On the statistical interpretation of the piecewise smooth Mumford–Shah functional’. Proc. Scale Space and Variational Methods in Computer Vision, 2007, pp. 203213.
    25. 25)
      • 25. Lankton, S., Tannenbaum, A.: ‘Localizing region-based active contours’, IEEE Trans. Image Process., 2008, 17, (11), pp. 20292039.
    26. 26)
      • 26. Li, C., Kao, C., Gore, J.C., et al: ‘Implicit active contours driven by local binary fitting energy’. IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, 2007, pp. 17.
    27. 27)
      • 27. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: a new formulation and level set method’, Image Vis. Comput., 2010, 28, (4), pp. 668676.
    28. 28)
      • 28. Tian, Y., Duan, F., Zhou, M., et al: ‘Active contour model combining region and edge information’, Mach. Vis. Appl., 2013, 24, (1), pp. 4761.
    29. 29)
      • 29. Wu, Y., Wang, Y., Jia, Y.: ‘Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model’, Comput. Vis. Image Underst., 2013, 117, (9), pp. 9901003.
    30. 30)
      • 30. Tran, T.T., Pham, V.T., Shyu, K.K.: ‘Image segmentation using fuzzy energy-based active contour with shape prior’, J. Vis. Commun. Image Represent., 2014, 25, (25), pp. 17321745.
    31. 31)
      • 31. Liao, X., Yuan, Z., Zheng, Q., et al: ‘Multi-scale and shape constrained localized region-based active contour segmentation of uterine fibroid ultrasound images in HIFU therapy’, PLoS ONE, 2014, 9, (7), p. e103334, doi: 10.1371/journal.pone.0103334 PMID: 25061939.
    32. 32)
      • 32. Dietenbeck, T., Alessandrini, M., Friboulet, D., et al: ‘CREASEG: a free software for the evaluation of image segmentation algorithms based on level set’. IEEE Int. Conf. on Image Processing, Hong Kong, China, 2010, pp. 665668.

Related content

This is a required field
Please enter a valid email address